Update app.py
Browse files
app.py
CHANGED
|
@@ -4,37 +4,60 @@ from html import unescape
|
|
| 4 |
import gradio as gr
|
| 5 |
import numpy as np
|
| 6 |
|
| 7 |
-
#
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
| 10 |
import joblib
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
except Exception as e:
|
| 13 |
-
|
| 14 |
-
|
| 15 |
|
| 16 |
-
#
|
|
|
|
|
|
|
| 17 |
TRANSFORMER = {"model": None, "tokenizer": None, "device": "cpu"}
|
| 18 |
try:
|
| 19 |
import torch
|
| 20 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 21 |
|
| 22 |
-
MODEL_DIR = "." #
|
| 23 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 24 |
|
| 25 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR, local_files_only=True)
|
| 26 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL_DIR, local_files_only=True)
|
| 27 |
model.to(device).eval()
|
| 28 |
|
| 29 |
-
TRANSFORMER
|
| 30 |
-
TRANSFORMER["tokenizer"] = tokenizer
|
| 31 |
-
TRANSFORMER["device"] = device
|
| 32 |
except Exception as e:
|
| 33 |
print(f"[WARN] Не удалось загрузить ruBERT: {e}")
|
| 34 |
|
| 35 |
-
#
|
| 36 |
-
|
| 37 |
-
#
|
|
|
|
| 38 |
try:
|
| 39 |
if os.path.exists("inference_config.json"):
|
| 40 |
with open("inference_config.json", "r", encoding="utf-8") as f:
|
|
@@ -43,7 +66,9 @@ try:
|
|
| 43 |
except Exception:
|
| 44 |
pass
|
| 45 |
|
| 46 |
-
#
|
|
|
|
|
|
|
| 47 |
from nltk.stem.snowball import RussianStemmer
|
| 48 |
stemmer = RussianStemmer(ignore_stopwords=False)
|
| 49 |
|
|
@@ -69,29 +94,52 @@ def clean_and_stem(s: str) -> str:
|
|
| 69 |
out.append(t if t in {"url", "tag", "num"} else stemmer.stem(t))
|
| 70 |
return " ".join(out)
|
| 71 |
|
| 72 |
-
#
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
if PIPE is None:
|
| 76 |
-
return
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
if TRANSFORMER["model"] is None:
|
| 83 |
-
return
|
| 84 |
import torch
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
tok = TRANSFORMER["tokenizer"](text, return_tensors="pt", truncation=True, max_length=256)
|
| 90 |
tok = {k: v.to(TRANSFORMER["device"]) for k, v in tok.items()}
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
def predict(model_name: str, comment: str, threshold: float):
|
| 97 |
comment = (comment or "").strip()
|
|
@@ -99,10 +147,16 @@ def predict(model_name: str, comment: str, threshold: float):
|
|
| 99 |
return {"Токсичный": 0.0, "Не токсичный": 1.0}, "—"
|
| 100 |
|
| 101 |
if model_name == "ruBERT-tiny2 (трансформер)":
|
| 102 |
-
p_toxic = infer_transformer(comment)
|
| 103 |
-
else:
|
| 104 |
-
p_toxic = infer_tfidf(comment)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
|
|
|
| 106 |
pred = "Токсичный" if p_toxic >= threshold else "Не токсичный"
|
| 107 |
dist = {"Токсичный": p_toxic, "Не токсичный": 1 - p_toxic}
|
| 108 |
expl = (
|
|
@@ -116,7 +170,9 @@ def predict(model_name: str, comment: str, threshold: float):
|
|
| 116 |
def clear_all():
|
| 117 |
return "ruBERT-tiny2 (трансформер)", "", DEFAULT_THRESHOLD, {"Токсичный": 0.0, "Не токсичный": 1.0}, "—"
|
| 118 |
|
| 119 |
-
#
|
|
|
|
|
|
|
| 120 |
TITLE = "Анализатор токсичности (две модели)"
|
| 121 |
DESCRIPTION = "Выберите модель, задайте порог (по умолчанию 0.70) и введите комментарий."
|
| 122 |
|
|
@@ -127,20 +183,19 @@ CUSTOM_CSS = """
|
|
| 127 |
|
| 128 |
ABOUT_MD = """
|
| 129 |
### Параметры и описание моделей
|
| 130 |
-
|
| 131 |
**1) ruBERT-tiny2 (трансформер)**
|
| 132 |
- База: `cointegrated/rubert-tiny2` (BERT-tiny для русского).
|
| 133 |
- Токенизация: BERT WordPiece.
|
| 134 |
- Предобработка: удаление пунктуации, нормализация спец-токенов (`url`, `tag`, `num`), стемминг Snowball.
|
| 135 |
- Обучение: 10 эпох с early stopping (по macro-F1), class weights (balanced).
|
| 136 |
-
- Рекомендованный
|
| 137 |
|
| 138 |
**2) TF-IDF + Логистическая регрессия**
|
| 139 |
-
-
|
| 140 |
-
-
|
| 141 |
-
- Рекомендованный
|
| 142 |
|
| 143 |
-
|
| 144 |
"""
|
| 145 |
|
| 146 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), css=CUSTOM_CSS) as demo:
|
|
@@ -155,7 +210,8 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), cs
|
|
| 155 |
label="Модель"
|
| 156 |
)
|
| 157 |
comment_input = gr.Textbox(label="Текст комментария", lines=6, placeholder="Напишите что-нибудь…")
|
| 158 |
-
thr = gr.Slider(label="Порог классификации", minimum=0.0, maximum=1.0,
|
|
|
|
| 159 |
with gr.Row():
|
| 160 |
analyze_btn = gr.Button("Анализ", variant="primary")
|
| 161 |
clear_btn = gr.Button("Очистить", variant="secondary")
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
import numpy as np
|
| 6 |
|
| 7 |
+
# ==============================
|
| 8 |
+
# TF-IDF + LR (joblib / sklearn)
|
| 9 |
+
# ==============================
|
| 10 |
+
PIPE, PIPE_PATH = None, None
|
| 11 |
+
def _load_tfidf():
|
| 12 |
import joblib
|
| 13 |
+
candidates = [
|
| 14 |
+
"model.joblib",
|
| 15 |
+
"artifacts/model.joblib",
|
| 16 |
+
"tfidf/model.joblib",
|
| 17 |
+
]
|
| 18 |
+
last_err = None
|
| 19 |
+
for p in candidates:
|
| 20 |
+
if os.path.exists(p):
|
| 21 |
+
try:
|
| 22 |
+
pipe = joblib.load(p)
|
| 23 |
+
return pipe, p
|
| 24 |
+
except Exception as e:
|
| 25 |
+
last_err = e
|
| 26 |
+
if last_err:
|
| 27 |
+
print(f"[WARN] TF-IDF load failed: {last_err}")
|
| 28 |
+
else:
|
| 29 |
+
print("[WARN] TF-IDF model not found in", candidates)
|
| 30 |
+
return None, None
|
| 31 |
+
|
| 32 |
+
try:
|
| 33 |
+
PIPE, PIPE_PATH = _load_tfidf()
|
| 34 |
except Exception as e:
|
| 35 |
+
print(f"[WARN] Не удалось инициализировать TF-IDF: {e}")
|
| 36 |
+
PIPE, PIPE_PATH = None, None
|
| 37 |
|
| 38 |
+
# ==============================
|
| 39 |
+
# Transformer (ruBERT-tiny2)
|
| 40 |
+
# ==============================
|
| 41 |
TRANSFORMER = {"model": None, "tokenizer": None, "device": "cpu"}
|
| 42 |
try:
|
| 43 |
import torch
|
| 44 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 45 |
|
| 46 |
+
MODEL_DIR = "." # файлы трансформера лежат в корне Space
|
| 47 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 48 |
|
| 49 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR, local_files_only=True)
|
| 50 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL_DIR, local_files_only=True)
|
| 51 |
model.to(device).eval()
|
| 52 |
|
| 53 |
+
TRANSFORMER.update({"model": model, "tokenizer": tokenizer, "device": device})
|
|
|
|
|
|
|
| 54 |
except Exception as e:
|
| 55 |
print(f"[WARN] Не удалось загрузить ruBERT: {e}")
|
| 56 |
|
| 57 |
+
# ==============================
|
| 58 |
+
# Порог по умолчанию
|
| 59 |
+
# ==============================
|
| 60 |
+
DEFAULT_THRESHOLD = 0.70
|
| 61 |
try:
|
| 62 |
if os.path.exists("inference_config.json"):
|
| 63 |
with open("inference_config.json", "r", encoding="utf-8") as f:
|
|
|
|
| 66 |
except Exception:
|
| 67 |
pass
|
| 68 |
|
| 69 |
+
# ==============================
|
| 70 |
+
# Предобработка (как при обучении трансформера)
|
| 71 |
+
# ==============================
|
| 72 |
from nltk.stem.snowball import RussianStemmer
|
| 73 |
stemmer = RussianStemmer(ignore_stopwords=False)
|
| 74 |
|
|
|
|
| 94 |
out.append(t if t in {"url", "tag", "num"} else stemmer.stem(t))
|
| 95 |
return " ".join(out)
|
| 96 |
|
| 97 |
+
# ==============================
|
| 98 |
+
# Инференс
|
| 99 |
+
# ==============================
|
| 100 |
+
def infer_tfidf(text: str):
|
| 101 |
+
"""
|
| 102 |
+
Вернёт (proba, err_msg). Если всё ок: (float in [0,1], None).
|
| 103 |
+
Если модели нет/ошибка: (None, 'сообщение').
|
| 104 |
+
"""
|
| 105 |
if PIPE is None:
|
| 106 |
+
return None, f"TF-IDF модель не загружена (ожидалась в {PIPE_PATH or 'model.joblib / artifacts/model.joblib'})."
|
| 107 |
+
try:
|
| 108 |
+
# предпочтительно predict_proba
|
| 109 |
+
if hasattr(PIPE, "predict_proba"):
|
| 110 |
+
proba = PIPE.predict_proba([text])[0, 1]
|
| 111 |
+
else:
|
| 112 |
+
# fallback: decision_function -> сигмоида
|
| 113 |
+
if hasattr(PIPE, "decision_function"):
|
| 114 |
+
z = PIPE.decision_function([text])[0]
|
| 115 |
+
proba = 1.0 / (1.0 + np.exp(-z))
|
| 116 |
+
else:
|
| 117 |
+
return None, "У модели нет predict_proba/decision_function."
|
| 118 |
+
# страховка от числ. артефактов
|
| 119 |
+
proba = float(np.clip(proba, 0.0, 1.0))
|
| 120 |
+
return proba, None
|
| 121 |
+
except Exception as e:
|
| 122 |
+
return None, f"Ошибка инференса TF-IDF: {e}"
|
| 123 |
+
|
| 124 |
+
def infer_transformer(text: str):
|
| 125 |
+
"""
|
| 126 |
+
Вернёт (proba, err_msg) аналогично TF-IDF.
|
| 127 |
+
"""
|
| 128 |
if TRANSFORMER["model"] is None:
|
| 129 |
+
return None, "Модель ruBERT не загружена."
|
| 130 |
import torch
|
| 131 |
+
text_prep = clean_and_stem(text)
|
| 132 |
+
if not text_prep:
|
| 133 |
+
return 0.0, None
|
| 134 |
+
tok = TRANSFORMER["tokenizer"](text_prep, return_tensors="pt", truncation=True, max_length=256)
|
|
|
|
| 135 |
tok = {k: v.to(TRANSFORMER["device"]) for k, v in tok.items()}
|
| 136 |
+
try:
|
| 137 |
+
with torch.inference_mode():
|
| 138 |
+
logits = TRANSFORMER["model"](**tok).logits
|
| 139 |
+
proba = torch.softmax(logits, dim=1)[0, 1].detach().cpu().item()
|
| 140 |
+
return float(proba), None
|
| 141 |
+
except Exception as e:
|
| 142 |
+
return None, f"Ошибка инференса ruBERT: {e}"
|
| 143 |
|
| 144 |
def predict(model_name: str, comment: str, threshold: float):
|
| 145 |
comment = (comment or "").strip()
|
|
|
|
| 147 |
return {"Токсичный": 0.0, "Не токсичный": 1.0}, "—"
|
| 148 |
|
| 149 |
if model_name == "ruBERT-tiny2 (трансформер)":
|
| 150 |
+
p_toxic, err = infer_transformer(comment)
|
| 151 |
+
else:
|
| 152 |
+
p_toxic, err = infer_tfidf(comment)
|
| 153 |
+
|
| 154 |
+
if err is not None or p_toxic is None:
|
| 155 |
+
dist = {"Токсичный": 0.0, "Не токсичный": 1.0}
|
| 156 |
+
expl = f"Модель: **{model_name}**\n\n⚠️ {err}"
|
| 157 |
+
return dist, expl
|
| 158 |
|
| 159 |
+
# ВЕРДИКТ ТОЛЬКО ПО ЗАДАННОМУ ПОРОГУ:
|
| 160 |
pred = "Токсичный" if p_toxic >= threshold else "Не токсичный"
|
| 161 |
dist = {"Токсичный": p_toxic, "Не токсичный": 1 - p_toxic}
|
| 162 |
expl = (
|
|
|
|
| 170 |
def clear_all():
|
| 171 |
return "ruBERT-tiny2 (трансформер)", "", DEFAULT_THRESHOLD, {"Токсичный": 0.0, "Не токсичный": 1.0}, "—"
|
| 172 |
|
| 173 |
+
# ==============================
|
| 174 |
+
# UI
|
| 175 |
+
# ==============================
|
| 176 |
TITLE = "Анализатор токсичности (две модели)"
|
| 177 |
DESCRIPTION = "Выберите модель, задайте порог (по умолчанию 0.70) и введите комментарий."
|
| 178 |
|
|
|
|
| 183 |
|
| 184 |
ABOUT_MD = """
|
| 185 |
### Параметры и описание моделей
|
|
|
|
| 186 |
**1) ruBERT-tiny2 (трансформер)**
|
| 187 |
- База: `cointegrated/rubert-tiny2` (BERT-tiny для русского).
|
| 188 |
- Токенизация: BERT WordPiece.
|
| 189 |
- Предобработка: удаление пунктуации, нормализация спец-токенов (`url`, `tag`, `num`), стемминг Snowball.
|
| 190 |
- Обучение: 10 эпох с early stopping (по macro-F1), class weights (balanced).
|
| 191 |
+
- Рекомендованный порог: ~**0.70**.
|
| 192 |
|
| 193 |
**2) TF-IDF + Логистическая регрессия**
|
| 194 |
+
- `TfidfVectorizer(analyzer="char_wb", ngram_range=(4,5), max_features≈200k, min_df≈1.75e-4, max_df≈0.96)`.
|
| 195 |
+
- `LogisticRegression(penalty="l1", solver="liblinear", C≈5.52, class_weight="balanced", max_iter=5000, tol≈2.4e-4)`.
|
| 196 |
+
- Рекомендованный порог: ~**0.40**.
|
| 197 |
|
| 198 |
+
> Порог можно свободно менять слайдером — подбирайте нужный баланс precision/recall.
|
| 199 |
"""
|
| 200 |
|
| 201 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), css=CUSTOM_CSS) as demo:
|
|
|
|
| 210 |
label="Модель"
|
| 211 |
)
|
| 212 |
comment_input = gr.Textbox(label="Текст комментария", lines=6, placeholder="Напишите что-нибудь…")
|
| 213 |
+
thr = gr.Slider(label="Порог классификации", minimum=0.0, maximum=1.0,
|
| 214 |
+
value=DEFAULT_THRESHOLD, step=0.01)
|
| 215 |
with gr.Row():
|
| 216 |
analyze_btn = gr.Button("Анализ", variant="primary")
|
| 217 |
clear_btn = gr.Button("Очистить", variant="secondary")
|