Update app.py
Browse files
app.py
CHANGED
|
@@ -4,7 +4,7 @@ import sys
|
|
| 4 |
import dataset
|
| 5 |
import engine
|
| 6 |
from model import BERTBaseUncased
|
| 7 |
-
|
| 8 |
import config
|
| 9 |
from transformers import pipeline, AutoTokenizer, AutoModel
|
| 10 |
import gradio as gr
|
|
@@ -14,32 +14,32 @@ model = BERTBaseUncased()
|
|
| 14 |
model.load_state_dict(torch.load(config.MODEL_PATH, map_location=torch.device(device)),strict=False)
|
| 15 |
model.to(device)
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
#
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
|
| 40 |
|
| 41 |
def sentence_prediction(sentence):
|
| 42 |
-
|
| 43 |
|
| 44 |
model_path = config.MODEL_PATH
|
| 45 |
|
|
@@ -51,7 +51,7 @@ def sentence_prediction(sentence):
|
|
| 51 |
test_data_loader = torch.utils.data.DataLoader(
|
| 52 |
test_dataset,
|
| 53 |
batch_size=config.VALID_BATCH_SIZE,
|
| 54 |
-
num_workers
|
| 55 |
)
|
| 56 |
|
| 57 |
outputs, [] = engine.predict_fn(test_data_loader, model, device)
|
|
|
|
| 4 |
import dataset
|
| 5 |
import engine
|
| 6 |
from model import BERTBaseUncased
|
| 7 |
+
from tokenizer import tokenizer
|
| 8 |
import config
|
| 9 |
from transformers import pipeline, AutoTokenizer, AutoModel
|
| 10 |
import gradio as gr
|
|
|
|
| 14 |
model.load_state_dict(torch.load(config.MODEL_PATH, map_location=torch.device(device)),strict=False)
|
| 15 |
model.to(device)
|
| 16 |
|
| 17 |
+
T = tokenizer.TweetTokenizer(
|
| 18 |
+
preserve_handles=True, preserve_hashes=True, preserve_case=False, preserve_url=False)
|
| 19 |
+
|
| 20 |
+
def preprocess(text):
|
| 21 |
+
tokens = T.tokenize(text)
|
| 22 |
+
print(tokens, file=sys.stderr)
|
| 23 |
+
ptokens = []
|
| 24 |
+
for index, token in enumerate(tokens):
|
| 25 |
+
if "@" in token:
|
| 26 |
+
if index > 0:
|
| 27 |
+
# check if previous token was mention
|
| 28 |
+
if "@" in tokens[index-1]:
|
| 29 |
+
pass
|
| 30 |
+
else:
|
| 31 |
+
ptokens.append("mention_0")
|
| 32 |
+
else:
|
| 33 |
+
ptokens.append("mention_0")
|
| 34 |
+
else:
|
| 35 |
+
ptokens.append(token)
|
| 36 |
+
|
| 37 |
+
print(ptokens, file=sys.stderr)
|
| 38 |
+
return " ".join(ptokens)
|
| 39 |
|
| 40 |
|
| 41 |
def sentence_prediction(sentence):
|
| 42 |
+
sentence = preprocess(sentence)
|
| 43 |
|
| 44 |
model_path = config.MODEL_PATH
|
| 45 |
|
|
|
|
| 51 |
test_data_loader = torch.utils.data.DataLoader(
|
| 52 |
test_dataset,
|
| 53 |
batch_size=config.VALID_BATCH_SIZE,
|
| 54 |
+
num_workers=2
|
| 55 |
)
|
| 56 |
|
| 57 |
outputs, [] = engine.predict_fn(test_data_loader, model, device)
|