Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import sys
|
| 3 |
+
import dataset
|
| 4 |
+
import engine
|
| 5 |
+
from model import BERTBaseUncased
|
| 6 |
+
from tokenizer import tokenizer
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
config = {
|
| 10 |
+
"device":
|
| 11 |
+
}
|
| 12 |
+
|
| 13 |
+
T = tokenizer.TweetTokenizer(
|
| 14 |
+
preserve_handles=True, preserve_hashes=True, preserve_case=False, preserve_url=False)
|
| 15 |
+
|
| 16 |
+
def preprocess(text):
|
| 17 |
+
tokens = T.tokenize(text)
|
| 18 |
+
print(tokens, file=sys.stderr)
|
| 19 |
+
ptokens = []
|
| 20 |
+
for index, token in enumerate(tokens):
|
| 21 |
+
if "@" in token:
|
| 22 |
+
if index > 0:
|
| 23 |
+
# check if previous token was mention
|
| 24 |
+
if "@" in tokens[index-1]:
|
| 25 |
+
pass
|
| 26 |
+
else:
|
| 27 |
+
ptokens.append("mention_0")
|
| 28 |
+
else:
|
| 29 |
+
ptokens.append("mention_0")
|
| 30 |
+
else:
|
| 31 |
+
ptokens.append(token)
|
| 32 |
+
|
| 33 |
+
print(ptokens, file=sys.stderr)
|
| 34 |
+
return " ".join(ptokens)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def sentence_prediction(sentence):
|
| 38 |
+
sentence = preprocess(sentence)
|
| 39 |
+
model_path = config.MODEL_PATH
|
| 40 |
+
|
| 41 |
+
test_dataset = dataset.BERTDataset(
|
| 42 |
+
review=[sentence],
|
| 43 |
+
target=[0]
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
test_data_loader = torch.utils.data.DataLoader(
|
| 47 |
+
test_dataset,
|
| 48 |
+
batch_size=config.VALID_BATCH_SIZE,
|
| 49 |
+
num_workers=3
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
device = config.device
|
| 53 |
+
|
| 54 |
+
model = BERTBaseUncased()
|
| 55 |
+
model.load_state_dict(torch.load(
|
| 56 |
+
model_path, map_location=torch.device(device)))
|
| 57 |
+
model.to(device)
|
| 58 |
+
|
| 59 |
+
outputs, [] = engine.predict_fn(test_data_loader, model, device)
|
| 60 |
+
print(outputs)
|
| 61 |
+
return outputs[0]
|
| 62 |
+
|
| 63 |
+
demo = gr.Interface(
|
| 64 |
+
fn=sentence_prediction,
|
| 65 |
+
inputs=gr.Textbox(placeholder="Enter a sentence here..."),
|
| 66 |
+
outputs="label",
|
| 67 |
+
interpretation="default",
|
| 68 |
+
examples=[["!"]])
|
| 69 |
+
|
| 70 |
+
demo.launch()
|