Spaces:
Sleeping
Sleeping
File size: 71,296 Bytes
9060565 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 |
"""
Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu.
"""
import os, time, datetime
import numpy as np
from scipy.stats import mode
import cv2
import torch
from torch import nn
from torch.nn.functional import conv2d, interpolate
from tqdm import trange
from pathlib import Path
import logging
denoise_logger = logging.getLogger(__name__)
from cellpose import transforms, resnet_torch, utils, io
from cellpose.core import run_net
from cellpose.resnet_torch import CPnet
from cellpose.models import CellposeModel, model_path, normalize_default, assign_device, check_mkl
MODEL_NAMES = []
for ctype in ["cyto3", "cyto2", "nuclei"]:
for ntype in ["denoise", "deblur", "upsample", "oneclick"]:
MODEL_NAMES.append(f"{ntype}_{ctype}")
if ctype != "cyto3":
for ltype in ["per", "seg", "rec"]:
MODEL_NAMES.append(f"{ntype}_{ltype}_{ctype}")
if ctype != "cyto3":
MODEL_NAMES.append(f"aniso_{ctype}")
criterion = nn.MSELoss(reduction="mean")
criterion2 = nn.BCEWithLogitsLoss(reduction="mean")
def deterministic(seed=0):
""" set random seeds to create test data """
import random
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
np.random.seed(seed) # Numpy module.
random.seed(seed) # Python random module.
torch.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def loss_fn_rec(lbl, y):
""" loss function between true labels lbl and prediction y """
loss = 80. * criterion(y, lbl)
return loss
def loss_fn_seg(lbl, y):
""" loss function between true labels lbl and prediction y """
veci = 5. * lbl[:, 1:]
lbl = (lbl[:, 0] > .5).float()
loss = criterion(y[:, :2], veci)
loss /= 2.
loss2 = criterion2(y[:, 2], lbl)
loss = loss + loss2
return loss
def get_sigma(Tdown):
""" Calculates the correlation matrices across channels for the perceptual loss.
Args:
Tdown (list): List of tensors output by each downsampling block of network.
Returns:
list: List of correlations for each input tensor.
"""
Tnorm = [x - x.mean((-2, -1), keepdim=True) for x in Tdown]
Tnorm = [x / x.std((-2, -1), keepdim=True) for x in Tnorm]
Sigma = [
torch.einsum("bnxy, bmxy -> bnm", x, x) / (x.shape[-2] * x.shape[-1])
for x in Tnorm
]
return Sigma
def imstats(X, net1):
"""
Calculates the image correlation matrices for the perceptual loss.
Args:
X (torch.Tensor): Input image tensor.
net1: Cellpose net.
Returns:
list: A list of tensors of correlation matrices.
"""
_, _, Tdown = net1(X)
Sigma = get_sigma(Tdown)
Sigma = [x.detach() for x in Sigma]
return Sigma
def loss_fn_per(img, net1, yl):
"""
Calculates the perceptual loss function for image restoration.
Args:
img (torch.Tensor): Input image tensor (noisy/blurry/downsampled).
net1 (torch.nn.Module): Perceptual loss net (Cellpose segmentation net).
yl (torch.Tensor): Clean image tensor.
Returns:
torch.Tensor: Mean perceptual loss.
"""
Sigma = imstats(img, net1)
sd = [x.std((1, 2)) + 1e-6 for x in Sigma]
Sigma_test = get_sigma(yl)
losses = torch.zeros(len(Sigma[0]), device=img.device)
for k in range(len(Sigma)):
losses = losses + (((Sigma_test[k] - Sigma[k])**2).mean((1, 2)) / sd[k]**2)
return losses.mean()
def test_loss(net0, X, net1=None, img=None, lbl=None, lam=[1., 1.5, 0.]):
"""
Calculates the test loss for image restoration tasks.
Args:
net0 (torch.nn.Module): The image restoration network.
X (torch.Tensor): The input image tensor.
net1 (torch.nn.Module, optional): The segmentation network for segmentation or perceptual loss. Defaults to None.
img (torch.Tensor, optional): Clean image tensor for perceptual or reconstruction loss. Defaults to None.
lbl (torch.Tensor, optional): The ground truth flows/cellprob tensor for segmentation loss. Defaults to None.
lam (list, optional): The weights for different loss components (perceptual, segmentation, reconstruction). Defaults to [1., 1.5, 0.].
Returns:
tuple: A tuple containing the total loss and the perceptual loss.
"""
net0.eval()
if net1 is not None:
net1.eval()
loss, loss_per = torch.zeros(1, device=X.device), torch.zeros(1, device=X.device)
with torch.no_grad():
img_dn = net0(X)[0]
if lam[2] > 0.:
loss += lam[2] * loss_fn_rec(img, img_dn)
if lam[1] > 0. or lam[0] > 0.:
y, _, ydown = net1(img_dn)
if lam[1] > 0.:
loss += lam[1] * loss_fn_seg(lbl, y)
if lam[0] > 0.:
loss_per = loss_fn_per(img, net1, ydown)
loss += lam[0] * loss_per
return loss, loss_per
def train_loss(net0, X, net1=None, img=None, lbl=None, lam=[1., 1.5, 0.]):
"""
Calculates the train loss for image restoration tasks.
Args:
net0 (torch.nn.Module): The image restoration network.
X (torch.Tensor): The input image tensor.
net1 (torch.nn.Module, optional): The segmentation network for segmentation or perceptual loss. Defaults to None.
img (torch.Tensor, optional): Clean image tensor for perceptual or reconstruction loss. Defaults to None.
lbl (torch.Tensor, optional): The ground truth flows/cellprob tensor for segmentation loss. Defaults to None.
lam (list, optional): The weights for different loss components (perceptual, segmentation, reconstruction). Defaults to [1., 1.5, 0.].
Returns:
tuple: A tuple containing the total loss and the perceptual loss.
"""
net0.train()
if net1 is not None:
net1.eval()
loss, loss_per = torch.zeros(1, device=X.device), torch.zeros(1, device=X.device)
img_dn = net0(X)[0]
if lam[2] > 0.:
loss += lam[2] * loss_fn_rec(img, img_dn)
if lam[1] > 0. or lam[0] > 0.:
y, _, ydown = net1(img_dn)
if lam[1] > 0.:
loss += lam[1] * loss_fn_seg(lbl, y)
if lam[0] > 0.:
loss_per = loss_fn_per(img, net1, ydown)
loss += lam[0] * loss_per
return loss, loss_per
def img_norm(imgi):
"""
Normalizes the input image by subtracting the 1st percentile and dividing by the difference between the 99th and 1st percentiles.
Args:
imgi (torch.Tensor): Input image tensor.
Returns:
torch.Tensor: Normalized image tensor.
"""
shape = imgi.shape
imgi = imgi.reshape(imgi.shape[0], imgi.shape[1], -1)
perc = torch.quantile(imgi, torch.tensor([0.01, 0.99], device=imgi.device), dim=-1,
keepdim=True)
for k in range(imgi.shape[1]):
hask = (perc[1, :, k, 0] - perc[0, :, k, 0]) > 1e-3
imgi[hask, k] -= perc[0, hask, k]
imgi[hask, k] /= (perc[1, hask, k] - perc[0, hask, k])
imgi = imgi.reshape(shape)
return imgi
def add_noise(lbl, alpha=4, beta=0.7, poisson=0.7, blur=0.7, gblur=1.0, downsample=0.7,
ds_max=7, diams=None, pscale=None, iso=True, sigma0=None, sigma1=None,
ds=None, uniform_blur=False, partial_blur=False):
"""Adds noise to the input image.
Args:
lbl (torch.Tensor): The input image tensor of shape (nimg, nchan, Ly, Lx).
alpha (float, optional): The shape parameter of the gamma distribution used for generating poisson noise. Defaults to 4.
beta (float, optional): The rate parameter of the gamma distribution used for generating poisson noise. Defaults to 0.7.
poisson (float, optional): The probability of adding poisson noise to the image. Defaults to 0.7.
blur (float, optional): The probability of adding gaussian blur to the image. Defaults to 0.7.
gblur (float, optional): The scale factor for the gaussian blur. Defaults to 1.0.
downsample (float, optional): The probability of downsampling the image. Defaults to 0.7.
ds_max (int, optional): The maximum downsampling factor. Defaults to 7.
diams (torch.Tensor, optional): The diameter of the objects in the image. Defaults to None.
pscale (torch.Tensor, optional): The scale factor for the poisson noise, instead of sampling. Defaults to None.
iso (bool, optional): Whether to use isotropic gaussian blur. Defaults to True.
sigma0 (torch.Tensor, optional): The standard deviation of the gaussian filter for the Y axis, instead of sampling. Defaults to None.
sigma1 (torch.Tensor, optional): The standard deviation of the gaussian filter for the X axis, instead of sampling. Defaults to None.
ds (torch.Tensor, optional): The downsampling factor for each image, instead of sampling. Defaults to None.
Returns:
torch.Tensor: The noisy image tensor of the same shape as the input image.
"""
device = lbl.device
imgi = torch.zeros_like(lbl)
Ly, Lx = lbl.shape[-2:]
diams = diams if diams is not None else 30. * torch.ones(len(lbl), device=device)
#ds0 = 1 if ds is None else ds.item()
ds = ds * torch.ones(
(len(lbl),), device=device, dtype=torch.long) if ds is not None else ds
# downsample
ii = []
idownsample = np.random.rand(len(lbl)) < downsample
if (ds is None and idownsample.sum() > 0.) or not iso:
ds = torch.ones(len(lbl), dtype=torch.long, device=device)
ds[idownsample] = torch.randint(2, ds_max + 1, size=(idownsample.sum(),),
device=device)
ii = torch.nonzero(ds > 1).flatten()
elif ds is not None and (ds > 1).sum():
ii = torch.nonzero(ds > 1).flatten()
# add gaussian blur
iblur = torch.rand(len(lbl), device=device) < blur
iblur[ii] = True
if iblur.sum() > 0:
if sigma0 is None:
if uniform_blur and iso:
xr = torch.rand(len(lbl), device=device)
if len(ii) > 0:
xr[ii] = ds[ii].float() / 2. / gblur
sigma0 = diams[iblur] / 30. * gblur * (1 / gblur + (1 - 1 / gblur) * xr[iblur])
sigma1 = sigma0.clone()
elif not iso:
xr = torch.rand(len(lbl), device=device)
if len(ii) > 0:
xr[ii] = (ds[ii].float()) / gblur
xr[ii] = xr[ii] + torch.rand(len(ii), device=device) * 0.7 - 0.35
xr[ii] = torch.clip(xr[ii], 0.05, 1.5)
sigma0 = diams[iblur] / 30. * gblur * xr[iblur]
sigma1 = sigma0.clone() / 10.
else:
xrand = np.random.exponential(1, size=iblur.sum())
xrand = np.clip(xrand * 0.5, 0.1, 1.0)
xrand *= gblur
sigma0 = diams[iblur] / 30. * 5. * torch.from_numpy(xrand).float().to(
device)
sigma1 = sigma0.clone()
else:
sigma0 = sigma0 * torch.ones((iblur.sum(),), device=device)
sigma1 = sigma1 * torch.ones((iblur.sum(),), device=device)
# create gaussian filter
xr = max(8, sigma0.max().long() * 2)
gfilt0 = torch.exp(-torch.arange(-xr + 1, xr, device=device)**2 /
(2 * sigma0.unsqueeze(-1)**2))
gfilt0 /= gfilt0.sum(axis=-1, keepdims=True)
gfilt1 = torch.zeros_like(gfilt0)
gfilt1[sigma1 == sigma0] = gfilt0[sigma1 == sigma0]
gfilt1[sigma1 != sigma0] = torch.exp(
-torch.arange(-xr + 1, xr, device=device)**2 /
(2 * sigma1[sigma1 != sigma0].unsqueeze(-1)**2))
gfilt1[sigma1 == 0] = 0.
gfilt1[sigma1 == 0, xr] = 1.
gfilt1 /= gfilt1.sum(axis=-1, keepdims=True)
gfilt = torch.einsum("ck,cl->ckl", gfilt0, gfilt1)
gfilt /= gfilt.sum(axis=(1, 2), keepdims=True)
lbl_blur = conv2d(lbl[iblur].transpose(1, 0), gfilt.unsqueeze(1),
padding=gfilt.shape[-1] // 2,
groups=gfilt.shape[0]).transpose(1, 0)
if partial_blur:
#yc, xc = np.random.randint(100, Ly-100), np.random.randint(100, Lx-100)
imgi[iblur] = lbl[iblur].clone()
Lxc = int(Lx * 0.85)
ym, xm = torch.meshgrid(torch.zeros(Ly, dtype=torch.float32),
torch.arange(0, Lxc, dtype=torch.float32),
indexing="ij")
mask = torch.exp(-(ym**2 + xm**2) / 2*(0.001**2))
mask -= mask.min()
mask /= mask.max()
lbl_blur_crop = lbl_blur[:, :, :, :Lxc]
imgi[iblur, :, :, :Lxc] = (lbl_blur_crop * mask +
(1-mask) * imgi[iblur, :, :, :Lxc])
else:
imgi[iblur] = lbl_blur
imgi[~iblur] = lbl[~iblur]
# apply downsample
for k in ii:
i0 = imgi[k:k + 1, :, ::ds[k], ::ds[k]] if iso else imgi[k:k + 1, :, ::ds[k]]
imgi[k] = interpolate(i0, size=lbl[k].shape[-2:], mode="bilinear")
# add poisson noise
ipoisson = np.random.rand(len(lbl)) < poisson
if ipoisson.sum() > 0:
if pscale is None:
pscale = torch.zeros(len(lbl))
m = torch.distributions.gamma.Gamma(alpha, beta)
pscale = torch.clamp(m.rsample(sample_shape=(ipoisson.sum(),)), 1.)
#pscale = torch.clamp(20 * (torch.rand(size=(len(lbl),), device=lbl.device)), 1.5)
pscale = pscale.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1).to(device)
else:
pscale = pscale * torch.ones((ipoisson.sum(), 1, 1, 1), device=device)
imgi[ipoisson] = torch.poisson(pscale * imgi[ipoisson])
imgi[~ipoisson] = imgi[~ipoisson]
# renormalize
imgi = img_norm(imgi)
return imgi
def random_rotate_and_resize_noise(data, labels=None, diams=None, poisson=0.7, blur=0.7,
downsample=0.0, beta=0.7, gblur=1.0, diam_mean=30,
ds_max=7, uniform_blur=False, iso=True, rotate=True,
device=torch.device("cuda"), xy=(224, 224),
nchan_noise=1, keep_raw=True):
"""
Applies random rotation, resizing, and noise to the input data.
Args:
data (numpy.ndarray): The input data.
labels (numpy.ndarray, optional): The flow and cellprob labels associated with the data. Defaults to None.
diams (float, optional): The diameter of the objects. Defaults to None.
poisson (float, optional): The Poisson noise probability. Defaults to 0.7.
blur (float, optional): The blur probability. Defaults to 0.7.
downsample (float, optional): The downsample probability. Defaults to 0.0.
beta (float, optional): The beta value for the poisson noise distribution. Defaults to 0.7.
gblur (float, optional): The Gaussian blur level. Defaults to 1.0.
diam_mean (float, optional): The mean diameter. Defaults to 30.
ds_max (int, optional): The maximum downsample value. Defaults to 7.
iso (bool, optional): Whether to apply isotropic augmentation. Defaults to True.
rotate (bool, optional): Whether to apply rotation augmentation. Defaults to True.
device (torch.device, optional): The device to use. Defaults to torch.device("cuda").
xy (tuple, optional): The size of the output image. Defaults to (224, 224).
nchan_noise (int, optional): The number of channels to add noise to. Defaults to 1.
keep_raw (bool, optional): Whether to keep the raw image. Defaults to True.
Returns:
torch.Tensor: The augmented image and augmented noisy/blurry/downsampled version of image.
torch.Tensor: The augmented labels.
float: The scale factor applied to the image.
"""
if device == None:
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('mps') if torch.backends.mps.is_available() else None
diams = 30 if diams is None else diams
random_diam = diam_mean * (2**(2 * np.random.rand(len(data)) - 1))
random_rsc = diams / random_diam #/ random_diam
#rsc /= random_scale
xy0 = (340, 340)
nchan = data[0].shape[0]
data_new = np.zeros((len(data), (1 + keep_raw) * nchan, xy0[0], xy0[1]), "float32")
labels_new = np.zeros((len(data), 3, xy0[0], xy0[1]), "float32")
for i in range(
len(data)): #, (sc, img, lbl) in enumerate(zip(random_rsc, data, labels)):
sc = random_rsc[i]
img = data[i]
lbl = labels[i] if labels is not None else None
# create affine transform to resize
Ly, Lx = img.shape[-2:]
dxy = np.maximum(0, np.array([Lx / sc - xy0[1], Ly / sc - xy0[0]]))
dxy = (np.random.rand(2,) - .5) * dxy
cc = np.array([Lx / 2, Ly / 2])
cc1 = cc - np.array([Lx - xy0[1], Ly - xy0[0]]) / 2 + dxy
pts1 = np.float32([cc, cc + np.array([1, 0]), cc + np.array([0, 1])])
pts2 = np.float32(
[cc1, cc1 + np.array([1, 0]) / sc, cc1 + np.array([0, 1]) / sc])
M = cv2.getAffineTransform(pts1, pts2)
# apply to image
for c in range(nchan):
img_rsz = cv2.warpAffine(img[c], M, xy0, flags=cv2.INTER_LINEAR)
#img_noise = add_noise(torch.from_numpy(img_rsz).to(device).unsqueeze(0)).cpu().numpy().squeeze(0)
data_new[i, c] = img_rsz
if keep_raw:
data_new[i, c + nchan] = img_rsz
if lbl is not None:
# apply to labels
labels_new[i, 0] = cv2.warpAffine(lbl[0], M, xy0, flags=cv2.INTER_NEAREST)
labels_new[i, 1] = cv2.warpAffine(lbl[1], M, xy0, flags=cv2.INTER_LINEAR)
labels_new[i, 2] = cv2.warpAffine(lbl[2], M, xy0, flags=cv2.INTER_LINEAR)
rsc = random_diam / diam_mean
# add noise before augmentations
img = torch.from_numpy(data_new).to(device)
img = torch.clamp(img, 0.)
# just add noise to cyto if nchan_noise=1
img[:, :nchan_noise] = add_noise(
img[:, :nchan_noise], poisson=poisson, blur=blur, ds_max=ds_max, iso=iso,
downsample=downsample, beta=beta, gblur=gblur,
diams=torch.from_numpy(random_diam).to(device).float())
# img -= img.mean(dim=(-2,-1), keepdim=True)
# img /= img.std(dim=(-2,-1), keepdim=True) + 1e-3
img = img.cpu().numpy()
# augmentations
img, lbl, scale = transforms.random_rotate_and_resize(
img,
Y=labels_new,
xy=xy,
rotate=False if not iso else rotate,
#(iso and downsample==0),
rescale=rsc,
scale_range=0.5)
img = torch.from_numpy(img).to(device)
lbl = torch.from_numpy(lbl).to(device)
return img, lbl, scale
def one_chan_cellpose(device, model_type="cyto2", pretrained_model=None):
"""
Creates a Cellpose network with a single input channel.
Args:
device (str): The device to run the network on.
model_type (str, optional): The type of Cellpose model to use. Defaults to "cyto2".
pretrained_model (str, optional): The path to a pretrained model file. Defaults to None.
Returns:
torch.nn.Module: The Cellpose network with a single input channel.
"""
if pretrained_model is not None and not os.path.exists(pretrained_model):
model_type = pretrained_model
pretrained_model = None
nbase = [32, 64, 128, 256]
nchan = 1
net1 = resnet_torch.CPnet([nchan, *nbase], nout=3, sz=3).to(device)
filename = model_path(model_type,
0) if pretrained_model is None else pretrained_model
weights = torch.load(filename, weights_only=True)
zp = 0
print(filename)
for name in net1.state_dict():
if ("res_down_0.conv.conv_0" not in name and
#"output" not in name and
"res_down_0.proj" not in name and name != "diam_mean" and
name != "diam_labels"):
net1.state_dict()[name].copy_(weights[name])
elif "res_down_0" in name:
if len(weights[name].shape) > 0:
new_weight = torch.zeros_like(net1.state_dict()[name])
if weights[name].shape[0] == 2:
new_weight[:] = weights[name][0]
elif len(weights[name].shape) > 1 and weights[name].shape[1] == 2:
new_weight[:, zp] = weights[name][:, 0]
else:
new_weight = weights[name]
else:
new_weight = weights[name]
net1.state_dict()[name].copy_(new_weight)
return net1
class CellposeDenoiseModel():
""" model to run Cellpose and Image restoration """
def __init__(self, gpu=False, pretrained_model=False, model_type=None,
restore_type="denoise_cyto3", nchan=2,
chan2_restore=False, device=None):
self.dn = DenoiseModel(gpu=gpu, model_type=restore_type, chan2=chan2_restore,
device=device)
self.cp = CellposeModel(gpu=gpu, model_type=model_type, nchan=nchan,
pretrained_model=pretrained_model, device=device)
def eval(self, x, batch_size=8, channels=None, channel_axis=None, z_axis=None,
normalize=True, rescale=None, diameter=None, tile_overlap=0.1,
augment=False, resample=True, invert=False, flow_threshold=0.4,
cellprob_threshold=0.0, do_3D=False, anisotropy=None, stitch_threshold=0.0,
min_size=15, niter=None, interp=True, bsize=224, flow3D_smooth=0):
"""
Restore array or list of images using the image restoration model, and then segment.
Args:
x (list, np.ndarry): can be list of 2D/3D/4D images, or array of 2D/3D/4D images
batch_size (int, optional): number of 224x224 patches to run simultaneously on the GPU
(can make smaller or bigger depending on GPU memory usage). Defaults to 8.
channels (list, optional): list of channels, either of length 2 or of length number of images by 2.
First element of list is the channel to segment (0=grayscale, 1=red, 2=green, 3=blue).
Second element of list is the optional nuclear channel (0=none, 1=red, 2=green, 3=blue).
For instance, to segment grayscale images, input [0,0]. To segment images with cells
in green and nuclei in blue, input [2,3]. To segment one grayscale image and one
image with cells in green and nuclei in blue, input [[0,0], [2,3]].
Defaults to None.
channel_axis (int, optional): channel axis in element of list x, or of np.ndarray x.
if None, channels dimension is attempted to be automatically determined. Defaults to None.
z_axis (int, optional): z axis in element of list x, or of np.ndarray x.
if None, z dimension is attempted to be automatically determined. Defaults to None.
normalize (bool, optional): if True, normalize data so 0.0=1st percentile and 1.0=99th percentile of image intensities in each channel;
can also pass dictionary of parameters (all keys are optional, default values shown):
- "lowhigh"=None : pass in normalization values for 0.0 and 1.0 as list [low, high] (if not None, all following parameters ignored)
- "sharpen"=0 ; sharpen image with high pass filter, recommended to be 1/4-1/8 diameter of cells in pixels
- "normalize"=True ; run normalization (if False, all following parameters ignored)
- "percentile"=None : pass in percentiles to use as list [perc_low, perc_high]
- "tile_norm"=0 ; compute normalization in tiles across image to brighten dark areas, to turn on set to window size in pixels (e.g. 100)
- "norm3D"=False ; compute normalization across entire z-stack rather than plane-by-plane in stitching mode.
Defaults to True.
rescale (float, optional): resize factor for each image, if None, set to 1.0;
(only used if diameter is None). Defaults to None.
diameter (float, optional): diameter for each image,
if diameter is None, set to diam_mean or diam_train if available. Defaults to None.
tile_overlap (float, optional): fraction of overlap of tiles when computing flows. Defaults to 0.1.
augment (bool, optional): augment tiles by flipping and averaging for segmentation. Defaults to False.
resample (bool, optional): run dynamics at original image size (will be slower but create more accurate boundaries). Defaults to True.
invert (bool, optional): invert image pixel intensity before running network. Defaults to False.
flow_threshold (float, optional): flow error threshold (all cells with errors below threshold are kept) (not used for 3D). Defaults to 0.4.
cellprob_threshold (float, optional): all pixels with value above threshold kept for masks, decrease to find more and larger masks. Defaults to 0.0.
do_3D (bool, optional): set to True to run 3D segmentation on 3D/4D image input. Defaults to False.
anisotropy (float, optional): for 3D segmentation, optional rescaling factor (e.g. set to 2.0 if Z is sampled half as dense as X or Y). Defaults to None.
stitch_threshold (float, optional): if stitch_threshold>0.0 and not do_3D, masks are stitched in 3D to return volume segmentation. Defaults to 0.0.
min_size (int, optional): all ROIs below this size, in pixels, will be discarded. Defaults to 15.
flow3D_smooth (int, optional): if do_3D and flow3D_smooth>0, smooth flows with gaussian filter of this stddev. Defaults to 0.
niter (int, optional): number of iterations for dynamics computation. if None, it is set proportional to the diameter. Defaults to None.
interp (bool, optional): interpolate during 2D dynamics (not available in 3D) . Defaults to True.
Returns:
A tuple containing (masks, flows, styles, imgs); masks: labelled image(s), where 0=no masks; 1,2,...=mask labels;
flows: list of lists: flows[k][0] = XY flow in HSV 0-255; flows[k][1] = XY(Z) flows at each pixel; flows[k][2] = cell probability (if > cellprob_threshold, pixel used for dynamics); flows[k][3] = final pixel locations after Euler integration;
styles: style vector summarizing each image of size 256;
imgs: Restored images.
"""
if isinstance(normalize, dict):
normalize_params = {**normalize_default, **normalize}
elif not isinstance(normalize, bool):
raise ValueError("normalize parameter must be a bool or a dict")
else:
normalize_params = normalize_default
normalize_params["normalize"] = normalize
normalize_params["invert"] = invert
img_restore = self.dn.eval(x, batch_size=batch_size, channels=channels,
channel_axis=channel_axis, z_axis=z_axis,
do_3D=do_3D,
normalize=normalize_params, rescale=rescale,
diameter=diameter,
tile_overlap=tile_overlap, bsize=bsize)
# turn off special normalization for segmentation
normalize_params = normalize_default
# change channels for segmentation
if channels is not None:
channels_new = [0, 0] if channels[0] == 0 else [1, 2]
else:
channels_new = None
# change diameter if self.ratio > 1 (upsampled to self.dn.diam_mean)
diameter = self.dn.diam_mean if self.dn.ratio > 1 else diameter
masks, flows, styles = self.cp.eval(
img_restore, batch_size=batch_size, channels=channels_new, channel_axis=-1,
z_axis=0 if not isinstance(img_restore, list) and img_restore.ndim > 3 and img_restore.shape[0] > 0 else None,
normalize=normalize_params, rescale=rescale, diameter=diameter,
tile_overlap=tile_overlap, augment=augment, resample=resample,
invert=invert, flow_threshold=flow_threshold,
cellprob_threshold=cellprob_threshold, do_3D=do_3D, anisotropy=anisotropy,
stitch_threshold=stitch_threshold, min_size=min_size, niter=niter,
interp=interp, bsize=bsize)
return masks, flows, styles, img_restore
class DenoiseModel():
"""
DenoiseModel class for denoising images using Cellpose denoising model.
Args:
gpu (bool, optional): Whether to use GPU for computation. Defaults to False.
pretrained_model (bool or str or Path, optional): Pretrained model to use for denoising.
Can be a string or path. Defaults to False.
nchan (int, optional): Number of channels in the input images, all Cellpose 3 models were trained with nchan=1. Defaults to 1.
model_type (str, optional): Type of pretrained model to use ("denoise_cyto3", "deblur_cyto3", "upsample_cyto3", ...). Defaults to None.
chan2 (bool, optional): Whether to use a separate model for the second channel. Defaults to False.
diam_mean (float, optional): Mean diameter of the objects in the images. Defaults to 30.0.
device (torch.device, optional): Device to use for computation. Defaults to None.
Attributes:
nchan (int): Number of channels in the input images.
diam_mean (float): Mean diameter of the objects in the images.
net (CPnet): Cellpose network for denoising.
pretrained_model (bool or str or Path): Pretrained model path to use for denoising.
net_chan2 (CPnet or None): Cellpose network for the second channel, if applicable.
net_type (str): Type of the denoising network.
Methods:
eval(x, batch_size=8, channels=None, channel_axis=None, z_axis=None,
normalize=True, rescale=None, diameter=None, tile=True, tile_overlap=0.1)
Denoise array or list of images using the denoising model.
_eval(net, x, normalize=True, rescale=None, diameter=None, tile=True,
tile_overlap=0.1)
Run denoising model on a single channel.
"""
def __init__(self, gpu=False, pretrained_model=False, nchan=1, model_type=None,
chan2=False, diam_mean=30., device=None):
self.nchan = nchan
if pretrained_model and (not isinstance(pretrained_model, str) and
not isinstance(pretrained_model, Path)):
raise ValueError("pretrained_model must be a string or path")
self.diam_mean = diam_mean
builtin = True
if model_type is not None or (pretrained_model and
not os.path.exists(pretrained_model)):
pretrained_model_string = model_type if model_type is not None else "denoise_cyto3"
if ~np.any([pretrained_model_string == s for s in MODEL_NAMES]):
pretrained_model_string = "denoise_cyto3"
pretrained_model = model_path(pretrained_model_string)
if (pretrained_model and not os.path.exists(pretrained_model)):
denoise_logger.warning("pretrained model has incorrect path")
denoise_logger.info(f">> {pretrained_model_string} << model set to be used")
self.diam_mean = 17. if "nuclei" in pretrained_model_string else 30.
else:
if pretrained_model:
builtin = False
pretrained_model_string = pretrained_model
denoise_logger.info(f">>>> loading model {pretrained_model_string}")
# assign network device
self.mkldnn = None
if device is None:
sdevice, gpu = assign_device(use_torch=True, gpu=gpu)
self.device = device if device is not None else sdevice
if device is not None:
device_gpu = self.device.type == "cuda"
self.gpu = gpu if device is None else device_gpu
if not self.gpu:
self.mkldnn = check_mkl(True)
# create network
self.nchan = nchan
self.nclasses = 1
nbase = [32, 64, 128, 256]
self.nchan = nchan
self.nbase = [nchan, *nbase]
self.net = CPnet(self.nbase, self.nclasses, sz=3, mkldnn=self.mkldnn,
max_pool=True, diam_mean=diam_mean).to(self.device)
self.pretrained_model = pretrained_model
self.net_chan2 = None
if self.pretrained_model:
self.net.load_model(self.pretrained_model, device=self.device)
denoise_logger.info(
f">>>> model diam_mean = {self.diam_mean: .3f} (ROIs rescaled to this size during training)"
)
if chan2 and builtin:
chan2_path = model_path(
os.path.split(self.pretrained_model)[-1].split("_")[0] + "_nuclei")
print(f"loading model for chan2: {os.path.split(str(chan2_path))[-1]}")
self.net_chan2 = CPnet(self.nbase, self.nclasses, sz=3,
mkldnn=self.mkldnn, max_pool=True,
diam_mean=17.).to(self.device)
self.net_chan2.load_model(chan2_path, device=self.device)
self.net_type = "cellpose_denoise"
def eval(self, x, batch_size=8, channels=None, channel_axis=None, z_axis=None,
normalize=True, rescale=None, diameter=None, tile=True, do_3D=False,
tile_overlap=0.1, bsize=224):
"""
Restore array or list of images using the image restoration model.
Args:
x (list, np.ndarry): can be list of 2D/3D/4D images, or array of 2D/3D/4D images
batch_size (int, optional): number of 224x224 patches to run simultaneously on the GPU
(can make smaller or bigger depending on GPU memory usage). Defaults to 8.
channels (list, optional): list of channels, either of length 2 or of length number of images by 2.
First element of list is the channel to segment (0=grayscale, 1=red, 2=green, 3=blue).
Second element of list is the optional nuclear channel (0=none, 1=red, 2=green, 3=blue).
For instance, to segment grayscale images, input [0,0]. To segment images with cells
in green and nuclei in blue, input [2,3]. To segment one grayscale image and one
image with cells in green and nuclei in blue, input [[0,0], [2,3]].
Defaults to None.
channel_axis (int, optional): channel axis in element of list x, or of np.ndarray x.
if None, channels dimension is attempted to be automatically determined. Defaults to None.
z_axis (int, optional): z axis in element of list x, or of np.ndarray x.
if None, z dimension is attempted to be automatically determined. Defaults to None.
normalize (bool, optional): if True, normalize data so 0.0=1st percentile and 1.0=99th percentile of image intensities in each channel;
can also pass dictionary of parameters (all keys are optional, default values shown):
- "lowhigh"=None : pass in normalization values for 0.0 and 1.0 as list [low, high] (if not None, all following parameters ignored)
- "sharpen"=0 ; sharpen image with high pass filter, recommended to be 1/4-1/8 diameter of cells in pixels
- "normalize"=True ; run normalization (if False, all following parameters ignored)
- "percentile"=None : pass in percentiles to use as list [perc_low, perc_high]
- "tile_norm"=0 ; compute normalization in tiles across image to brighten dark areas, to turn on set to window size in pixels (e.g. 100)
- "norm3D"=False ; compute normalization across entire z-stack rather than plane-by-plane in stitching mode.
Defaults to True.
rescale (float, optional): resize factor for each image, if None, set to 1.0;
(only used if diameter is None). Defaults to None.
diameter (float, optional): diameter for each image,
if diameter is None, set to diam_mean or diam_train if available. Defaults to None.
tile_overlap (float, optional): fraction of overlap of tiles when computing flows. Defaults to 0.1.
Returns:
list: A list of 2D/3D arrays of restored images
"""
if isinstance(x, list) or x.squeeze().ndim == 5:
tqdm_out = utils.TqdmToLogger(denoise_logger, level=logging.INFO)
nimg = len(x)
iterator = trange(nimg, file=tqdm_out,
mininterval=30) if nimg > 1 else range(nimg)
imgs = []
for i in iterator:
imgi = self.eval(
x[i], batch_size=batch_size,
channels=channels[i] if channels is not None and
((len(channels) == len(x) and
(isinstance(channels[i], list) or
isinstance(channels[i], np.ndarray)) and len(channels[i]) == 2))
else channels, channel_axis=channel_axis, z_axis=z_axis,
normalize=normalize,
do_3D=do_3D,
rescale=rescale[i] if isinstance(rescale, list) or
isinstance(rescale, np.ndarray) else rescale,
diameter=diameter[i] if isinstance(diameter, list) or
isinstance(diameter, np.ndarray) else diameter,
tile_overlap=tile_overlap, bsize=bsize)
imgs.append(imgi)
if isinstance(x, np.ndarray):
imgs = np.array(imgs)
return imgs
else:
# reshape image
x = transforms.convert_image(x, channels, channel_axis=channel_axis,
z_axis=z_axis, do_3D=do_3D, nchan=None)
if x.ndim < 4:
squeeze = True
x = x[np.newaxis, ...]
else:
squeeze = False
# may need to interpolate image before running upsampling
self.ratio = 1.
if "upsample" in self.pretrained_model:
Ly, Lx = x.shape[-3:-1]
if diameter is not None and 3 <= diameter < self.diam_mean:
self.ratio = self.diam_mean / diameter
denoise_logger.info(
f"upsampling image to {self.diam_mean} pixel diameter ({self.ratio:0.2f} times)"
)
Lyr, Lxr = int(Ly * self.ratio), int(Lx * self.ratio)
x = transforms.resize_image(x, Ly=Lyr, Lx=Lxr)
else:
denoise_logger.warning(
f"not interpolating image before upsampling because diameter is set >= {self.diam_mean}"
)
#raise ValueError(f"diameter is set to {diameter}, needs to be >=3 and < {self.dn.diam_mean}")
self.batch_size = batch_size
if diameter is not None and diameter > 0:
rescale = self.diam_mean / diameter
elif rescale is None:
rescale = 1.0
if np.ptp(x[..., -1]) < 1e-3 or (channels is not None and channels[-1] == 0):
x = x[..., :1]
for c in range(x.shape[-1]):
rescale0 = rescale * 30. / 17. if c == 1 else rescale
if c == 0 or self.net_chan2 is None:
x[...,
c] = self._eval(self.net, x[..., c:c + 1], batch_size=batch_size,
normalize=normalize, rescale=rescale0,
tile_overlap=tile_overlap, bsize=bsize)[...,0]
else:
x[...,
c] = self._eval(self.net_chan2, x[...,
c:c + 1], batch_size=batch_size,
normalize=normalize, rescale=rescale0,
tile_overlap=tile_overlap, bsize=bsize)[...,0]
x = x[0] if squeeze else x
return x
def _eval(self, net, x, batch_size=8, normalize=True, rescale=None,
tile_overlap=0.1, bsize=224):
"""
Run image restoration model on a single channel.
Args:
x (list, np.ndarry): can be list of 2D/3D/4D images, or array of 2D/3D/4D images
batch_size (int, optional): number of 224x224 patches to run simultaneously on the GPU
(can make smaller or bigger depending on GPU memory usage). Defaults to 8.
normalize (bool, optional): if True, normalize data so 0.0=1st percentile and 1.0=99th percentile of image intensities in each channel;
can also pass dictionary of parameters (all keys are optional, default values shown):
- "lowhigh"=None : pass in normalization values for 0.0 and 1.0 as list [low, high] (if not None, all following parameters ignored)
- "sharpen"=0 ; sharpen image with high pass filter, recommended to be 1/4-1/8 diameter of cells in pixels
- "normalize"=True ; run normalization (if False, all following parameters ignored)
- "percentile"=None : pass in percentiles to use as list [perc_low, perc_high]
- "tile_norm"=0 ; compute normalization in tiles across image to brighten dark areas, to turn on set to window size in pixels (e.g. 100)
- "norm3D"=False ; compute normalization across entire z-stack rather than plane-by-plane in stitching mode.
Defaults to True.
rescale (float, optional): resize factor for each image, if None, set to 1.0;
(only used if diameter is None). Defaults to None.
tile_overlap (float, optional): fraction of overlap of tiles when computing flows. Defaults to 0.1.
Returns:
list: A list of 2D/3D arrays of restored images
"""
if isinstance(normalize, dict):
normalize_params = {**normalize_default, **normalize}
elif not isinstance(normalize, bool):
raise ValueError("normalize parameter must be a bool or a dict")
else:
normalize_params = normalize_default
normalize_params["normalize"] = normalize
tic = time.time()
shape = x.shape
nimg = shape[0]
do_normalization = True if normalize_params["normalize"] else False
img = np.asarray(x)
if do_normalization:
img = transforms.normalize_img(img, **normalize_params)
if rescale != 1.0:
img = transforms.resize_image(img, rsz=rescale)
yf, style = run_net(self.net, img, bsize=bsize,
tile_overlap=tile_overlap)
yf = transforms.resize_image(yf, shape[1], shape[2])
imgs = yf
del yf, style
# imgs = np.zeros((*x.shape[:-1], 1), np.float32)
# for i in iterator:
# img = np.asarray(x[i])
# if do_normalization:
# img = transforms.normalize_img(img, **normalize_params)
# if rescale != 1.0:
# img = transforms.resize_image(img, rsz=[rescale, rescale])
# if img.ndim == 2:
# img = img[:, :, np.newaxis]
# yf, style = run_net(net, img, batch_size=batch_size, augment=False,
# tile=tile, tile_overlap=tile_overlap, bsize=bsize)
# img = transforms.resize_image(yf, Ly=x.shape[-3], Lx=x.shape[-2])
# if img.ndim == 2:
# img = img[:, :, np.newaxis]
# imgs[i] = img
# del yf, style
net_time = time.time() - tic
if nimg > 1:
denoise_logger.info("imgs denoised in %2.2fs" % (net_time))
return imgs
def train(net, train_data=None, train_labels=None, train_files=None, test_data=None,
test_labels=None, test_files=None, train_probs=None, test_probs=None,
lam=[1., 1.5, 0.], scale_range=0.5, seg_model_type="cyto2", save_path=None,
save_every=100, save_each=False, poisson=0.7, beta=0.7, blur=0.7, gblur=1.0,
iso=True, uniform_blur=False, downsample=0., ds_max=7,
learning_rate=0.005, n_epochs=500,
weight_decay=0.00001, batch_size=8, nimg_per_epoch=None,
nimg_test_per_epoch=None, model_name=None):
# net properties
device = net.device
nchan = net.nchan
diam_mean = net.diam_mean.item()
args = np.array([poisson, beta, blur, gblur, downsample])
if args.ndim == 1:
args = args[:, np.newaxis]
poisson, beta, blur, gblur, downsample = args
nnoise = len(poisson)
d = datetime.datetime.now()
if save_path is not None:
if model_name is None:
filename = ""
lstrs = ["per", "seg", "rec"]
for k, (l, s) in enumerate(zip(lam, lstrs)):
filename += f"{s}_{l:.2f}_"
if not iso:
filename += "aniso_"
if poisson.sum() > 0:
filename += "poisson_"
if blur.sum() > 0:
filename += "blur_"
if downsample.sum() > 0:
filename += "downsample_"
filename += d.strftime("%Y_%m_%d_%H_%M_%S.%f")
filename = os.path.join(save_path, filename)
else:
filename = os.path.join(save_path, model_name)
print(filename)
for i in range(len(poisson)):
denoise_logger.info(
f"poisson: {poisson[i]: 0.2f}, beta: {beta[i]: 0.2f}, blur: {blur[i]: 0.2f}, gblur: {gblur[i]: 0.2f}, downsample: {downsample[i]: 0.2f}"
)
net1 = one_chan_cellpose(device=device, pretrained_model=seg_model_type)
learning_rate_const = learning_rate
LR = np.linspace(0, learning_rate_const, 10)
LR = np.append(LR, learning_rate_const * np.ones(n_epochs - 100))
for i in range(10):
LR = np.append(LR, LR[-1] / 2 * np.ones(10))
learning_rate = LR
batch_size = 8
optimizer = torch.optim.AdamW(net.parameters(), lr=learning_rate[0],
weight_decay=weight_decay)
if train_data is not None:
nimg = len(train_data)
diam_train = np.array(
[utils.diameters(train_labels[k])[0] for k in trange(len(train_labels))])
diam_train[diam_train < 5] = 5.
if test_data is not None:
diam_test = np.array(
[utils.diameters(test_labels[k])[0] for k in trange(len(test_labels))])
diam_test[diam_test < 5] = 5.
nimg_test = len(test_data)
else:
nimg = len(train_files)
denoise_logger.info(">>> using files instead of loading dataset")
train_labels_files = [str(tf)[:-4] + f"_flows.tif" for tf in train_files]
denoise_logger.info(">>> computing diameters")
diam_train = np.array([
utils.diameters(io.imread(train_labels_files[k])[0])[0]
for k in trange(len(train_labels_files))
])
diam_train[diam_train < 5] = 5.
if test_files is not None:
nimg_test = len(test_files)
test_labels_files = [str(tf)[:-4] + f"_flows.tif" for tf in test_files]
diam_test = np.array([
utils.diameters(io.imread(test_labels_files[k])[0])[0]
for k in trange(len(test_labels_files))
])
diam_test[diam_test < 5] = 5.
train_probs = 1. / nimg * np.ones(nimg,
"float64") if train_probs is None else train_probs
if test_files is not None or test_data is not None:
test_probs = 1. / nimg_test * np.ones(
nimg_test, "float64") if test_probs is None else test_probs
tic = time.time()
nimg_per_epoch = nimg if nimg_per_epoch is None else nimg_per_epoch
if test_files is not None or test_data is not None:
nimg_test_per_epoch = nimg_test if nimg_test_per_epoch is None else nimg_test_per_epoch
nbatch = 0
train_losses, test_losses = [], []
for iepoch in range(n_epochs):
np.random.seed(iepoch)
rperm = np.random.choice(np.arange(0, nimg), size=(nimg_per_epoch,),
p=train_probs)
torch.manual_seed(iepoch)
np.random.seed(iepoch)
for param_group in optimizer.param_groups:
param_group["lr"] = learning_rate[iepoch]
lavg, lavg_per, nsum = 0, 0, 0
for ibatch in range(0, nimg_per_epoch, batch_size * nnoise):
inds = rperm[ibatch : ibatch + batch_size * nnoise]
if train_data is None:
imgs = [np.maximum(0, io.imread(train_files[i])[:nchan]) for i in inds]
lbls = [io.imread(train_labels_files[i])[1:] for i in inds]
else:
imgs = [train_data[i][:nchan] for i in inds]
lbls = [train_labels[i][1:] for i in inds]
#inoise = nbatch % nnoise
rnoise = np.random.permutation(nnoise)
for i, inoise in enumerate(rnoise):
if i * batch_size < len(imgs):
imgi, lbli, scale = random_rotate_and_resize_noise(
imgs[i * batch_size : (i + 1) * batch_size],
lbls[i * batch_size : (i + 1) * batch_size],
diam_train[inds][i * batch_size : (i + 1) * batch_size].copy(),
poisson=poisson[inoise],
beta=beta[inoise], gblur=gblur[inoise], blur=blur[inoise], iso=iso,
downsample=downsample[inoise], uniform_blur=uniform_blur,
diam_mean=diam_mean, ds_max=ds_max,
device=device)
if i == 0:
img = imgi
lbl = lbli
else:
img = torch.cat((img, imgi), axis=0)
lbl = torch.cat((lbl, lbli), axis=0)
if nnoise > 0:
iperm = np.random.permutation(img.shape[0])
img, lbl = img[iperm], lbl[iperm]
for i in range(nnoise):
optimizer.zero_grad()
imgi = img[i * batch_size: (i + 1) * batch_size]
lbli = lbl[i * batch_size: (i + 1) * batch_size]
if imgi.shape[0] > 0:
loss, loss_per = train_loss(net, imgi[:, :nchan], net1=net1,
img=imgi[:, nchan:], lbl=lbli, lam=lam)
loss.backward()
optimizer.step()
lavg += loss.item() * imgi.shape[0]
lavg_per += loss_per.item() * imgi.shape[0]
nsum += len(img)
nbatch += 1
if iepoch % 5 == 0 or iepoch < 10:
lavg = lavg / nsum
lavg_per = lavg_per / nsum
if test_data is not None or test_files is not None:
lavgt, nsum = 0., 0
np.random.seed(42)
rperm = np.random.choice(np.arange(0, nimg_test),
size=(nimg_test_per_epoch,), p=test_probs)
inoise = iepoch % nnoise
torch.manual_seed(inoise)
for ibatch in range(0, nimg_test_per_epoch, batch_size):
inds = rperm[ibatch:ibatch + batch_size]
if test_data is None:
imgs = [
np.maximum(0,
io.imread(test_files[i])[:nchan]) for i in inds
]
lbls = [io.imread(test_labels_files[i])[1:] for i in inds]
else:
imgs = [test_data[i][:nchan] for i in inds]
lbls = [test_labels[i][1:] for i in inds]
img, lbl, scale = random_rotate_and_resize_noise(
imgs, lbls, diam_test[inds].copy(), poisson=poisson[inoise],
beta=beta[inoise], blur=blur[inoise], gblur=gblur[inoise],
iso=iso, downsample=downsample[inoise], uniform_blur=uniform_blur,
diam_mean=diam_mean, ds_max=ds_max, device=device)
loss, loss_per = test_loss(net, img[:, :nchan], net1=net1,
img=img[:, nchan:], lbl=lbl, lam=lam)
lavgt += loss.item() * img.shape[0]
nsum += len(img)
lavgt = lavgt / nsum
denoise_logger.info(
"Epoch %d, Time %4.1fs, Loss %0.3f, loss_per %0.3f, Loss Test %0.3f, LR %2.4f"
% (iepoch, time.time() - tic, lavg, lavg_per, lavgt,
learning_rate[iepoch]))
test_losses.append(lavgt)
else:
denoise_logger.info(
"Epoch %d, Time %4.1fs, Loss %0.3f, loss_per %0.3f, LR %2.4f" %
(iepoch, time.time() - tic, lavg, lavg_per, learning_rate[iepoch]))
train_losses.append(lavg)
if save_path is not None:
if iepoch == n_epochs - 1 or (iepoch % save_every == 0 and iepoch != 0):
if save_each: #separate files as model progresses
filename0 = str(filename) + f"_epoch_{iepoch:%04d}"
else:
filename0 = filename
denoise_logger.info(f"saving network parameters to {filename0}")
net.save_model(filename0)
else:
filename = save_path
return filename, train_losses, test_losses
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="cellpose parameters")
input_img_args = parser.add_argument_group("input image arguments")
input_img_args.add_argument("--dir", default=[], type=str,
help="folder containing data to run or train on.")
input_img_args.add_argument("--img_filter", default=[], type=str,
help="end string for images to run on")
model_args = parser.add_argument_group("model arguments")
model_args.add_argument("--pretrained_model", default=[], type=str,
help="pretrained denoising model")
training_args = parser.add_argument_group("training arguments")
training_args.add_argument("--test_dir", default=[], type=str,
help="folder containing test data (optional)")
training_args.add_argument("--file_list", default=[], type=str,
help="npy file containing list of train and test files")
training_args.add_argument("--seg_model_type", default="cyto2", type=str,
help="model to use for seg training loss")
training_args.add_argument(
"--noise_type", default=[], type=str,
help="noise type to use (if input, then other noise params are ignored)")
training_args.add_argument("--poisson", default=0.8, type=float,
help="fraction of images to add poisson noise to")
training_args.add_argument("--beta", default=0.7, type=float,
help="scale of poisson noise")
training_args.add_argument("--blur", default=0., type=float,
help="fraction of images to blur")
training_args.add_argument("--gblur", default=1.0, type=float,
help="scale of gaussian blurring stddev")
training_args.add_argument("--downsample", default=0., type=float,
help="fraction of images to downsample")
training_args.add_argument("--ds_max", default=7, type=int,
help="max downsampling factor")
training_args.add_argument("--lam_per", default=1.0, type=float,
help="weighting of perceptual loss")
training_args.add_argument("--lam_seg", default=1.5, type=float,
help="weighting of segmentation loss")
training_args.add_argument("--lam_rec", default=0., type=float,
help="weighting of reconstruction loss")
training_args.add_argument(
"--diam_mean", default=30., type=float, help=
"mean diameter to resize cells to during training -- if starting from pretrained models it cannot be changed from 30.0"
)
training_args.add_argument("--learning_rate", default=0.001, type=float,
help="learning rate. Default: %(default)s")
training_args.add_argument("--n_epochs", default=2000, type=int,
help="number of epochs. Default: %(default)s")
training_args.add_argument(
"--save_each", default=False, action="store_true",
help="save each epoch as separate model")
training_args.add_argument(
"--nimg_per_epoch", default=0, type=int,
help="number of images per epoch. Default is length of training images")
training_args.add_argument(
"--nimg_test_per_epoch", default=0, type=int,
help="number of test images per epoch. Default is length of testing images")
io.logger_setup()
args = parser.parse_args()
lams = [args.lam_per, args.lam_seg, args.lam_rec]
print("lam", lams)
if len(args.noise_type) > 0:
noise_type = args.noise_type
uniform_blur = False
iso = True
if noise_type == "poisson":
poisson = 0.8
blur = 0.
downsample = 0.
beta = 0.7
gblur = 1.0
elif noise_type == "blur_expr":
poisson = 0.8
blur = 0.8
downsample = 0.
beta = 0.1
gblur = 0.5
elif noise_type == "blur":
poisson = 0.8
blur = 0.8
downsample = 0.
beta = 0.1
gblur = 10.0
uniform_blur = True
elif noise_type == "downsample_expr":
poisson = 0.8
blur = 0.8
downsample = 0.8
beta = 0.03
gblur = 1.0
elif noise_type == "downsample":
poisson = 0.8
blur = 0.8
downsample = 0.8
beta = 0.03
gblur = 5.0
uniform_blur = True
elif noise_type == "all":
poisson = [0.8, 0.8, 0.8]
blur = [0., 0.8, 0.8]
downsample = [0., 0., 0.8]
beta = [0.7, 0.1, 0.03]
gblur = [0., 10.0, 5.0]
uniform_blur = True
elif noise_type == "aniso":
poisson = 0.8
blur = 0.8
downsample = 0.8
beta = 0.1
gblur = args.ds_max * 1.5
iso = False
else:
raise ValueError(f"{noise_type} noise_type is not supported")
else:
poisson, beta = args.poisson, args.beta
blur, gblur = args.blur, args.gblur
downsample = args.downsample
pretrained_model = None if len(
args.pretrained_model) == 0 else args.pretrained_model
model = DenoiseModel(gpu=True, nchan=1, diam_mean=args.diam_mean,
pretrained_model=pretrained_model)
train_data, labels, train_files, train_probs = None, None, None, None
test_data, test_labels, test_files, test_probs = None, None, None, None
if len(args.file_list) == 0:
output = io.load_train_test_data(args.dir, args.test_dir, "_img", "_masks", 0)
images, labels, image_names, test_images, test_labels, image_names_test = output
train_data = []
for i in range(len(images)):
img = images[i].astype("float32")
if img.ndim > 2:
img = img[0]
train_data.append(
np.maximum(transforms.normalize99(img), 0)[np.newaxis, :, :])
if len(args.test_dir) > 0:
test_data = []
for i in range(len(test_images)):
img = test_images[i].astype("float32")
if img.ndim > 2:
img = img[0]
test_data.append(
np.maximum(transforms.normalize99(img), 0)[np.newaxis, :, :])
save_path = os.path.join(args.dir, "../models/")
else:
root = args.dir
denoise_logger.info(
">>> using file_list (assumes images are normalized and have flows!)")
dat = np.load(args.file_list, allow_pickle=True).item()
train_files = dat["train_files"]
test_files = dat["test_files"]
train_probs = dat["train_probs"] if "train_probs" in dat else None
test_probs = dat["test_probs"] if "test_probs" in dat else None
if str(train_files[0])[:len(str(root))] != str(root):
for i in range(len(train_files)):
new_path = root / Path(*train_files[i].parts[-3:])
if i == 0:
print(f"changing path from {train_files[i]} to {new_path}")
train_files[i] = new_path
for i in range(len(test_files)):
new_path = root / Path(*test_files[i].parts[-3:])
test_files[i] = new_path
save_path = os.path.join(args.dir, "models/")
os.makedirs(save_path, exist_ok=True)
nimg_per_epoch = None if args.nimg_per_epoch == 0 else args.nimg_per_epoch
nimg_test_per_epoch = None if args.nimg_test_per_epoch == 0 else args.nimg_test_per_epoch
model_path = train(
model.net, train_data=train_data, train_labels=labels, train_files=train_files,
test_data=test_data, test_labels=test_labels, test_files=test_files,
train_probs=train_probs, test_probs=test_probs, poisson=poisson, beta=beta,
blur=blur, gblur=gblur, downsample=downsample, ds_max=args.ds_max,
iso=iso, uniform_blur=uniform_blur, n_epochs=args.n_epochs,
learning_rate=args.learning_rate,
lam=lams,
seg_model_type=args.seg_model_type, nimg_per_epoch=nimg_per_epoch,
nimg_test_per_epoch=nimg_test_per_epoch, save_path=save_path)
def seg_train_noisy(model, train_data, train_labels, test_data=None, test_labels=None,
poisson=0.8, blur=0.0, downsample=0.0, save_path=None,
save_every=100, save_each=False, learning_rate=0.2, n_epochs=500,
momentum=0.9, weight_decay=0.00001, SGD=True, batch_size=8,
nimg_per_epoch=None, diameter=None, rescale=True, z_masking=False,
model_name=None):
""" train function uses loss function model.loss_fn in models.py
(data should already be normalized)
"""
d = datetime.datetime.now()
model.n_epochs = n_epochs
if isinstance(learning_rate, (list, np.ndarray)):
if isinstance(learning_rate, np.ndarray) and learning_rate.ndim > 1:
raise ValueError("learning_rate.ndim must equal 1")
elif len(learning_rate) != n_epochs:
raise ValueError(
"if learning_rate given as list or np.ndarray it must have length n_epochs"
)
model.learning_rate = learning_rate
model.learning_rate_const = mode(learning_rate)[0][0]
else:
model.learning_rate_const = learning_rate
# set learning rate schedule
if SGD:
LR = np.linspace(0, model.learning_rate_const, 10)
if model.n_epochs > 250:
LR = np.append(
LR, model.learning_rate_const * np.ones(model.n_epochs - 100))
for i in range(10):
LR = np.append(LR, LR[-1] / 2 * np.ones(10))
else:
LR = np.append(
LR,
model.learning_rate_const * np.ones(max(0, model.n_epochs - 10)))
else:
LR = model.learning_rate_const * np.ones(model.n_epochs)
model.learning_rate = LR
model.batch_size = batch_size
model._set_optimizer(model.learning_rate[0], momentum, weight_decay, SGD)
model._set_criterion()
nimg = len(train_data)
# compute average cell diameter
if diameter is None:
diam_train = np.array(
[utils.diameters(train_labels[k][0])[0] for k in range(len(train_labels))])
diam_train_mean = diam_train[diam_train > 0].mean()
model.diam_labels = diam_train_mean
if rescale:
diam_train[diam_train < 5] = 5.
if test_data is not None:
diam_test = np.array([
utils.diameters(test_labels[k][0])[0]
for k in range(len(test_labels))
])
diam_test[diam_test < 5] = 5.
denoise_logger.info(">>>> median diameter set to = %d" % model.diam_mean)
elif rescale:
diam_train_mean = diameter
model.diam_labels = diameter
denoise_logger.info(">>>> median diameter set to = %d" % model.diam_mean)
diam_train = diameter * np.ones(len(train_labels), "float32")
if test_data is not None:
diam_test = diameter * np.ones(len(test_labels), "float32")
denoise_logger.info(
f">>>> mean of training label mask diameters (saved to model) {diam_train_mean:.3f}"
)
model.net.diam_labels.data = torch.ones(1, device=model.device) * diam_train_mean
nchan = train_data[0].shape[0]
denoise_logger.info(">>>> training network with %d channel input <<<<" % nchan)
denoise_logger.info(">>>> LR: %0.5f, batch_size: %d, weight_decay: %0.5f" %
(model.learning_rate_const, model.batch_size, weight_decay))
if test_data is not None:
denoise_logger.info(f">>>> ntrain = {nimg}, ntest = {len(test_data)}")
else:
denoise_logger.info(f">>>> ntrain = {nimg}")
tic = time.time()
lavg, nsum = 0, 0
if save_path is not None:
_, file_label = os.path.split(save_path)
file_path = os.path.join(save_path, "models/")
if not os.path.exists(file_path):
os.makedirs(file_path)
else:
denoise_logger.warning("WARNING: no save_path given, model not saving")
ksave = 0
# cannot train with mkldnn
model.net.mkldnn = False
# get indices for each epoch for training
np.random.seed(0)
inds_all = np.zeros((0,), "int32")
if nimg_per_epoch is None or nimg > nimg_per_epoch:
nimg_per_epoch = nimg
denoise_logger.info(f">>>> nimg_per_epoch = {nimg_per_epoch}")
while len(inds_all) < n_epochs * nimg_per_epoch:
rperm = np.random.permutation(nimg)
inds_all = np.hstack((inds_all, rperm))
for iepoch in range(model.n_epochs):
if SGD:
model._set_learning_rate(model.learning_rate[iepoch])
np.random.seed(iepoch)
rperm = inds_all[iepoch * nimg_per_epoch:(iepoch + 1) * nimg_per_epoch]
for ibatch in range(0, nimg_per_epoch, batch_size):
inds = rperm[ibatch:ibatch + batch_size]
imgi, lbl, scale = random_rotate_and_resize_noise(
[train_data[i] for i in inds], [train_labels[i][1:] for i in inds],
poisson=poisson, blur=blur, downsample=downsample,
diams=diam_train[inds], diam_mean=model.diam_mean)
imgi = imgi[:, :1] # keep noisy only
if z_masking:
nc = imgi.shape[1]
nb = imgi.shape[0]
ncmin = (np.random.rand(nb) > 0.25) * (np.random.randint(
nc // 2 - 1, size=nb))
ncmax = nc - (np.random.rand(nb) > 0.25) * (np.random.randint(
nc // 2 - 1, size=nb))
for b in range(nb):
imgi[b, :ncmin[b]] = 0
imgi[b, ncmax[b]:] = 0
train_loss = model._train_step(imgi, lbl)
lavg += train_loss
nsum += len(imgi)
if iepoch % 10 == 0 or iepoch == 5:
lavg = lavg / nsum
if test_data is not None:
lavgt, nsum = 0., 0
np.random.seed(42)
rperm = np.arange(0, len(test_data), 1, int)
for ibatch in range(0, len(test_data), batch_size):
inds = rperm[ibatch:ibatch + batch_size]
imgi, lbl, scale = random_rotate_and_resize_noise(
[test_data[i] for i in inds],
[test_labels[i][1:] for i in inds], poisson=poisson, blur=blur,
downsample=downsample, diams=diam_test[inds],
diam_mean=model.diam_mean)
imgi = imgi[:, :1] # keep noisy only
test_loss = model._test_eval(imgi, lbl)
lavgt += test_loss
nsum += len(imgi)
denoise_logger.info(
"Epoch %d, Time %4.1fs, Loss %2.4f, Loss Test %2.4f, LR %2.4f" %
(iepoch, time.time() - tic, lavg, lavgt / nsum,
model.learning_rate[iepoch]))
else:
denoise_logger.info(
"Epoch %d, Time %4.1fs, Loss %2.4f, LR %2.4f" %
(iepoch, time.time() - tic, lavg, model.learning_rate[iepoch]))
lavg, nsum = 0, 0
if save_path is not None:
if iepoch == model.n_epochs - 1 or iepoch % save_every == 1:
# save model at the end
if save_each: #separate files as model progresses
if model_name is None:
filename = "{}_{}_{}_{}".format(
model.net_type, file_label,
d.strftime("%Y_%m_%d_%H_%M_%S.%f"), "epoch_" + str(iepoch))
else:
filename = "{}_{}".format(model_name, "epoch_" + str(iepoch))
else:
if model_name is None:
filename = "{}_{}_{}".format(model.net_type, file_label,
d.strftime("%Y_%m_%d_%H_%M_%S.%f"))
else:
filename = model_name
filename = os.path.join(file_path, filename)
ksave += 1
denoise_logger.info(f"saving network parameters to {filename}")
model.net.save_model(filename)
else:
filename = save_path
# reset to mkldnn if available
model.net.mkldnn = model.mkldnn
return filename
|