File size: 41,629 Bytes
9060565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
"""
Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu.
"""

import time, os
from scipy.ndimage import maximum_filter1d, find_objects, center_of_mass
import torch
import numpy as np
import tifffile
from tqdm import trange
from numba import njit, prange, float32, int32, vectorize
import cv2
import fastremap

import logging

dynamics_logger = logging.getLogger(__name__)

from . import utils, metrics, transforms

import torch
from torch import optim, nn
import torch.nn.functional as F
from . import resnet_torch

@njit("(float64[:], int32[:], int32[:], int32, int32, int32, int32)", nogil=True)
def _extend_centers(T, y, x, ymed, xmed, Lx, niter):
    """Run diffusion from the center of the mask on the mask pixels.

    Args:
        T (numpy.ndarray): Array of shape (Ly * Lx) where diffusion is run.
        y (numpy.ndarray): Array of y-coordinates of pixels inside the mask.
        x (numpy.ndarray): Array of x-coordinates of pixels inside the mask.
        ymed (int): Center of the mask in the y-coordinate.
        xmed (int): Center of the mask in the x-coordinate.
        Lx (int): Size of the x-dimension of the masks.
        niter (int): Number of iterations to run diffusion.

    Returns:
        numpy.ndarray: Array of shape (Ly * Lx) representing the amount of diffused particles at each pixel.
    """
    for t in range(niter):
        T[ymed * Lx + xmed] += 1
        T[y * Lx +
          x] = 1 / 9. * (T[y * Lx + x] + T[(y - 1) * Lx + x] + T[(y + 1) * Lx + x] +
                         T[y * Lx + x - 1] + T[y * Lx + x + 1] +
                         T[(y - 1) * Lx + x - 1] + T[(y - 1) * Lx + x + 1] +
                         T[(y + 1) * Lx + x - 1] + T[(y + 1) * Lx + x + 1])
    return T


def _extend_centers_gpu(neighbors, meds, isneighbor, shape, n_iter=200, 
                        device=torch.device("cpu")):
    """Runs diffusion on GPU to generate flows for training images or quality control.

    Args:
        neighbors (torch.Tensor): 9 x pixels in masks.
        meds (torch.Tensor): Mask centers.
        isneighbor (torch.Tensor): Valid neighbor boolean 9 x pixels.
        shape (tuple): Shape of the tensor.
        n_iter (int, optional): Number of iterations. Defaults to 200.
        device (torch.device, optional): Device to run the computation on. Defaults to torch.device("cpu").

    Returns:
        torch.Tensor: Generated flows.

    """
    if torch.prod(torch.tensor(shape)) > 4e7 or device.type == "mps":
        T = torch.zeros(shape, dtype=torch.float, device=device)
    else:
        T = torch.zeros(shape, dtype=torch.double, device=device)

    for i in range(n_iter):
        T[tuple(meds.T)] += 1
        Tneigh = T[tuple(neighbors)]
        Tneigh *= isneighbor
        T[tuple(neighbors[:, 0])] = Tneigh.mean(axis=0)
    del meds, isneighbor, Tneigh

    if T.ndim == 2:
        grads = T[neighbors[0, [2, 1, 4, 3]], neighbors[1, [2, 1, 4, 3]]]
        del neighbors
        dy = grads[0] - grads[1]
        dx = grads[2] - grads[3]
        del grads
        mu_torch = np.stack((dy.cpu().squeeze(0), dx.cpu().squeeze(0)), axis=-2)
    else:
        grads = T[tuple(neighbors[:, 1:])]
        del neighbors
        dz = grads[0] - grads[1]
        dy = grads[2] - grads[3]
        dx = grads[4] - grads[5]
        del grads
        mu_torch = np.stack(
            (dz.cpu().squeeze(0), dy.cpu().squeeze(0), dx.cpu().squeeze(0)), axis=-2)
    return mu_torch

@njit(nogil=True)
def get_centers(masks, slices):
    """
    Get the centers of the masks and their extents.

    Args:
        masks (ndarray): The labeled masks.
        slices (ndarray): The slices of the masks.

    Returns:
        A tuple containing the centers of the masks and the extents of the masks.
    """
    centers = np.zeros((len(slices), 2), "int32")
    ext = np.zeros((len(slices),), "int32")
    for p in prange(len(slices)):
        si = slices[p]
        i = si[0]
        sr, sc = si[1:3], si[3:5]
        # find center in slice around mask
        yi, xi = np.nonzero(masks[sr[0]:sr[-1], sc[0]:sc[-1]] == (i + 1))
        ymed = yi.mean()
        xmed = xi.mean()
        # center is closest point to (ymed, xmed) within mask
        imin = ((xi - xmed)**2 + (yi - ymed)**2).argmin()
        ymed = yi[imin] + sr[0]
        xmed = xi[imin] + sc[0]
        centers[p] = np.array([ymed, xmed])
        ext[p] = (sr[-1] - sr[0]) + (sc[-1] - sc[0]) + 2
    return centers, ext


def masks_to_flows_gpu(masks, device=torch.device("cpu"), niter=None):
    """Convert masks to flows using diffusion from center pixel.

    Center of masks where diffusion starts is defined by pixel closest to median within the mask.

    Args:
        masks (int, 2D or 3D array): Labelled masks. 0=NO masks; 1,2,...=mask labels.
        device (torch.device, optional): The device to run the computation on. Defaults to torch.device("cpu").
        niter (int, optional): Number of iterations for the diffusion process. Defaults to None.

    Returns:
        np.ndarray: A 4D array representing the flows for each pixel in Z, X, and Y.
       

    Returns:
        A tuple containing (mu, meds_p). mu is float 3D or 4D array of flows in (Z)XY. 
        meds_p are cell centers.
    """
    if device is None:
        device = torch.device('cuda') if torch.cuda.is_available() else torch.device('mps') if torch.backends.mps.is_available() else None

    Ly0, Lx0 = masks.shape
    Ly, Lx = Ly0 + 2, Lx0 + 2
    
    masks_padded = torch.from_numpy(masks.astype("int64")).to(device)
    masks_padded = F.pad(masks_padded, (1, 1, 1, 1))
    shape = masks_padded.shape
    
    ### get mask pixel neighbors
    y, x = torch.nonzero(masks_padded, as_tuple=True)
    y = y.int()
    x = x.int()
    neighbors = torch.zeros((2, 9, y.shape[0]), dtype=torch.long, device=device)
    yxi = [[0, -1, 1, 0, 0, -1, -1, 1, 1], [0, 0, 0, -1, 1, -1, 1, -1, 1]]
    for i in range(9):
        neighbors[0, i] = y + yxi[0][i]
        neighbors[1, i] = x + yxi[1][i]
    isneighbor = torch.ones((9, y.shape[0]), dtype=torch.bool, device=device)
    m0 = masks_padded[neighbors[0, 0], neighbors[1, 0]]
    for i in range(1, 9):
        isneighbor[i] = masks_padded[neighbors[0, i], neighbors[1, i]] == m0
    del m0, masks_padded
    
    ### get center-of-mass within cell
    slices = find_objects(masks)
    # turn slices into array
    slices = np.array([
        np.array([i, si[0].start, si[0].stop, si[1].start, si[1].stop])
        for i, si in enumerate(slices)
        if si is not None
    ])
    centers, ext = get_centers(masks, slices)
    meds_p = torch.from_numpy(centers).to(device).long()
    meds_p += 1  # for padding

    ### run diffusion
    n_iter = 2 * ext.max() if niter is None else niter
    mu = _extend_centers_gpu(neighbors, meds_p, isneighbor, shape, n_iter=n_iter,
                             device=device)
    mu = mu.astype("float64")

    # new normalization
    mu /= (1e-60 + (mu**2).sum(axis=0)**0.5)

    # put into original image
    mu0 = np.zeros((2, Ly0, Lx0))
    mu0[:, y.cpu().numpy() - 1, x.cpu().numpy() - 1] = mu

    return mu0, meds_p.cpu().numpy() - 1


def masks_to_flows_gpu_3d(masks, device=None, niter=None):
    """Convert masks to flows using diffusion from center pixel.

    Args:
        masks (int, 2D or 3D array): Labelled masks. 0=NO masks; 1,2,...=mask labels.
        device (torch.device, optional): The device to run the computation on. Defaults to None.
        niter (int, optional): Number of iterations for the diffusion process. Defaults to None.

    Returns:
        np.ndarray: A 4D array representing the flows for each pixel in Z, X, and Y.
        
    """
    if device is None:
        device = torch.device('cuda') if torch.cuda.is_available() else torch.device('mps') if torch.backends.mps.is_available() else None

    Lz0, Ly0, Lx0 = masks.shape
    Lz, Ly, Lx = Lz0 + 2, Ly0 + 2, Lx0 + 2

    masks_padded = torch.from_numpy(masks.astype("int64")).to(device)
    masks_padded = F.pad(masks_padded, (1, 1, 1, 1, 1, 1))

    # get mask pixel neighbors
    z, y, x = torch.nonzero(masks_padded).T
    neighborsZ = torch.stack((z, z + 1, z - 1, z, z, z, z))
    neighborsY = torch.stack((y, y, y, y + 1, y - 1, y, y), axis=0)
    neighborsX = torch.stack((x, x, x, x, x, x + 1, x - 1), axis=0)

    neighbors = torch.stack((neighborsZ, neighborsY, neighborsX), axis=0)

    # get mask centers
    slices = find_objects(masks)

    centers = np.zeros((masks.max(), 3), "int")
    for i, si in enumerate(slices):
        if si is not None:
            sz, sy, sx = si
            #lz, ly, lx = sr.stop - sr.start + 1, sc.stop - sc.start + 1
            zi, yi, xi = np.nonzero(masks[sz, sy, sx] == (i + 1))
            zi = zi.astype(np.int32) + 1  # add padding
            yi = yi.astype(np.int32) + 1  # add padding
            xi = xi.astype(np.int32) + 1  # add padding
            zmed = np.mean(zi)
            ymed = np.mean(yi)
            xmed = np.mean(xi)
            imin = np.argmin((zi - zmed)**2 + (xi - xmed)**2 + (yi - ymed)**2)
            zmed = zi[imin]
            ymed = yi[imin]
            xmed = xi[imin]
            centers[i, 0] = zmed + sz.start
            centers[i, 1] = ymed + sy.start
            centers[i, 2] = xmed + sx.start

    # get neighbor validator (not all neighbors are in same mask)
    neighbor_masks = masks_padded[tuple(neighbors)]
    isneighbor = neighbor_masks == neighbor_masks[0]
    ext = np.array(
        [[sz.stop - sz.start + 1, sy.stop - sy.start + 1, sx.stop - sx.start + 1]
         for sz, sy, sx in slices])
    n_iter = 6 * (ext.sum(axis=1)).max() if niter is None else niter

    # run diffusion
    shape = masks_padded.shape
    mu = _extend_centers_gpu(neighbors, centers, isneighbor, shape, n_iter=n_iter,
                             device=device)
    # normalize
    mu /= (1e-60 + (mu**2).sum(axis=0)**0.5)

    # put into original image
    mu0 = np.zeros((3, Lz0, Ly0, Lx0))
    mu0[:, z.cpu().numpy() - 1, y.cpu().numpy() - 1, x.cpu().numpy() - 1] = mu
    return mu0


def masks_to_flows_cpu(masks, niter=None, device=None):
    """Convert masks to flows using diffusion from center pixel.

    Center of masks where diffusion starts is defined to be the closest pixel to the mean of all pixels that is inside the mask.
    Result of diffusion is converted into flows by computing the gradients of the diffusion density map.

    Args:
        masks (int, 2D or 3D array): Labelled masks 0=NO masks; 1,2,...=mask labels
        niter (int, optional): Number of iterations for computing flows. Defaults to None.
    
    Returns:
        A tuple containing (mu, meds_p). mu is float 3D or 4D array of flows in (Z)XY. 
        meds_p are cell centers.
    """
    Ly, Lx = masks.shape
    mu = np.zeros((2, Ly, Lx), np.float64)

    slices = find_objects(masks)
    meds = []
    for i in prange(len(slices)):
        si = slices[i]
        if si is not None:
            sr, sc = si
            ly, lx = sr.stop - sr.start + 2, sc.stop - sc.start + 2
            ### get center-of-mass within cell
            y, x = np.nonzero(masks[sr, sc] == (i + 1))
            y = y.astype(np.int32) + 1
            x = x.astype(np.int32) + 1
            ymed = y.mean()
            xmed = x.mean()
            imin = ((x - xmed)**2 + (y - ymed)**2).argmin()
            xmed = x[imin]
            ymed = y[imin]

            n_iter = 2 * np.int32(ly + lx) if niter is None else niter
            T = np.zeros((ly) * (lx), np.float64)
            T = _extend_centers(T, y, x, ymed, xmed, np.int32(lx), np.int32(n_iter))
            dy = T[(y + 1) * lx + x] - T[(y - 1) * lx + x]
            dx = T[y * lx + x + 1] - T[y * lx + x - 1]
            mu[:, sr.start + y - 1, sc.start + x - 1] = np.stack((dy, dx))
            meds.append([ymed - 1, xmed - 1])

    # new normalization
    mu /= (1e-60 + (mu**2).sum(axis=0)**0.5)

    return mu, meds


def masks_to_flows(masks, device=torch.device("cpu"), niter=None):
    """Convert masks to flows using diffusion from center pixel.

    Center of masks where diffusion starts is defined to be the closest pixel to the mean of all pixels that is inside the mask.
    Result of diffusion is converted into flows by computing the gradients of the diffusion density map.

    Args:
        masks (int, 2D or 3D array): Labelled masks 0=NO masks; 1,2,...=mask labels

    Returns:
        np.ndarray: mu is float 3D or 4D array of flows in (Z)XY.
    """
    if masks.max() == 0:
        dynamics_logger.warning("empty masks!")
        return np.zeros((2, *masks.shape), "float32")

    if device.type == "cuda" or device.type == "mps":
        masks_to_flows_device = masks_to_flows_gpu
    else:
        masks_to_flows_device = masks_to_flows_cpu
    
    if masks.ndim == 3:
        Lz, Ly, Lx = masks.shape
        mu = np.zeros((3, Lz, Ly, Lx), np.float32)
        for z in range(Lz):
            mu0 = masks_to_flows_device(masks[z], device=device, niter=niter)[0]
            mu[[1, 2], z] += mu0
        for y in range(Ly):
            mu0 = masks_to_flows_device(masks[:, y], device=device, niter=niter)[0]
            mu[[0, 2], :, y] += mu0
        for x in range(Lx):
            mu0 = masks_to_flows_device(masks[:, :, x], device=device, niter=niter)[0]
            mu[[0, 1], :, :, x] += mu0
        return mu
    elif masks.ndim == 2:
        mu, mu_c = masks_to_flows_device(masks, device=device, niter=niter)
        return mu

    else:
        raise ValueError("masks_to_flows only takes 2D or 3D arrays")


def labels_to_flows(labels, files=None, device=None, redo_flows=False, niter=None,
                    return_flows=True):
    """Converts labels (list of masks or flows) to flows for training model.

    Args:
        labels (list of ND-arrays): The labels to convert. labels[k] can be 2D or 3D. If [3 x Ly x Lx], 
            it is assumed that flows were precomputed. Otherwise, labels[k][0] or labels[k] (if 2D) 
            is used to create flows and cell probabilities.
        files (list of str, optional): The files to save the flows to. If provided, flows are saved to 
            files to be reused. Defaults to None.
        device (str, optional): The device to use for computation. Defaults to None.
        redo_flows (bool, optional): Whether to recompute the flows. Defaults to False.
        niter (int, optional): The number of iterations for computing flows. Defaults to None.

    Returns:
        list of [4 x Ly x Lx] arrays: The flows for training the model. flows[k][0] is labels[k], 
        flows[k][1] is cell distance transform, flows[k][2] is Y flow, flows[k][3] is X flow, 
        and flows[k][4] is heat distribution.
    """
    nimg = len(labels)
    if labels[0].ndim < 3:
        labels = [labels[n][np.newaxis, :, :] for n in range(nimg)]

    flows = []
    # flows need to be recomputed
    if labels[0].shape[0] == 1 or labels[0].ndim < 3 or redo_flows:
        dynamics_logger.info("computing flows for labels")

        # compute flows; labels are fixed here to be unique, so they need to be passed back
        # make sure labels are unique!
        labels = [fastremap.renumber(label, in_place=True)[0] for label in labels]
        iterator = trange if nimg > 1 else range
        for n in iterator(nimg):
            labels[n][0] = fastremap.renumber(labels[n][0], in_place=True)[0]
            vecn = masks_to_flows(labels[n][0].astype(int), device=device, niter=niter)

            # concatenate labels, distance transform, vector flows, heat (boundary and mask are computed in augmentations)
            flow = np.concatenate((labels[n], labels[n] > 0.5, vecn),
                                  axis=0).astype(np.float32)
            if files is not None:
                file_name = os.path.splitext(files[n])[0]
                tifffile.imwrite((file_name + "_flows.tif").replace("/y/", "/flows/"), flow)
            if return_flows:
                flows.append(flow)
    else:
        dynamics_logger.info("flows precomputed")
        if return_flows:
            flows = [labels[n].astype(np.float32) for n in range(nimg)]
    return flows


@njit([
    "(int16[:,:,:], float32[:], float32[:], float32[:,:])",
    "(float32[:,:,:], float32[:], float32[:], float32[:,:])"
], cache=True)
def map_coordinates(I, yc, xc, Y):
    """
    Bilinear interpolation of image "I" in-place with y-coordinates yc and x-coordinates xc to Y.
    
    Args:
        I (numpy.ndarray): Input image of shape (C, Ly, Lx).
        yc (numpy.ndarray): New y-coordinates.
        xc (numpy.ndarray): New x-coordinates.
        Y (numpy.ndarray): Output array of shape (C, ni).
    
    Returns:
        None
    """
    C, Ly, Lx = I.shape
    yc_floor = yc.astype(np.int32)
    xc_floor = xc.astype(np.int32)
    yc = yc - yc_floor
    xc = xc - xc_floor
    for i in range(yc_floor.shape[0]):
        yf = min(Ly - 1, max(0, yc_floor[i]))
        xf = min(Lx - 1, max(0, xc_floor[i]))
        yf1 = min(Ly - 1, yf + 1)
        xf1 = min(Lx - 1, xf + 1)
        y = yc[i]
        x = xc[i]
        for c in range(C):
            Y[c, i] = (np.float32(I[c, yf, xf]) * (1 - y) * (1 - x) +
                       np.float32(I[c, yf, xf1]) * (1 - y) * x +
                       np.float32(I[c, yf1, xf]) * y * (1 - x) +
                       np.float32(I[c, yf1, xf1]) * y * x)


def steps_interp(dP, inds, niter, device=torch.device("cpu")):
    """ Run dynamics of pixels to recover masks in 2D/3D, with interpolation between pixel values.

    Euler integration of dynamics dP for niter steps.

    Args:
        p (numpy.ndarray): Array of shape (n_points, 2 or 3) representing the initial pixel locations.
        dP (numpy.ndarray): Array of shape (2, Ly, Lx) or (3, Lz, Ly, Lx) representing the flow field.
        niter (int): Number of iterations to perform.
        device (torch.device, optional): Device to use for computation. Defaults to None.

    Returns:
        numpy.ndarray: Array of shape (n_points, 2) or (n_points, 3) representing the final pixel locations.

    Raises:
        None

    """
    
    shape = dP.shape[1:]
    ndim = len(shape)
    if (device.type == "cuda" or device.type == "mps") or ndim==3:
        pt = torch.zeros((*[1]*ndim, len(inds[0]), ndim), dtype=torch.float32, device=device)
        im = torch.zeros((1, ndim, *shape), dtype=torch.float32, device=device)
        # Y and X dimensions, flipped X-1, Y-1
        # pt is [1 1 1 3 n_points]
        for n in range(ndim):
            if ndim==3:
                pt[0, 0, 0, :, ndim - n - 1] = torch.from_numpy(inds[n]).to(device, dtype=torch.float32)
            else:
                pt[0, 0, :, ndim - n - 1] = torch.from_numpy(inds[n]).to(device, dtype=torch.float32)
            im[0, ndim - n - 1] = torch.from_numpy(dP[n]).to(device, dtype=torch.float32)
        shape = np.array(shape)[::-1].astype("float") - 1  
        
        # normalize pt between  0 and  1, normalize the flow
        for k in range(ndim):
            im[:, k] *= 2. / shape[k]
            pt[..., k] /= shape[k]

        # normalize to between -1 and 1
        pt *= 2 
        pt -= 1
        
        # dynamics
        for t in range(niter):
            dPt = torch.nn.functional.grid_sample(im, pt, align_corners=False)
            for k in range(ndim):  #clamp the final pixel locations
                pt[..., k] = torch.clamp(pt[..., k] + dPt[:, k], -1., 1.)

        #undo the normalization from before, reverse order of operations
        pt += 1 
        pt *= 0.5
        for k in range(ndim):
            pt[..., k] *= shape[k]

        if ndim==3:
            pt = pt[..., [2, 1, 0]].squeeze()
            pt = pt.unsqueeze(0) if pt.ndim==1 else pt 
            return pt.T
        else:
            pt = pt[..., [1, 0]].squeeze()
            pt = pt.unsqueeze(0) if pt.ndim==1 else pt
            return pt.T

    else:
        p = np.zeros((ndim, len(inds[0])), "float32")
        for n in range(ndim):
            p[n] = inds[n]        
        dPt = np.zeros(p.shape, "float32")
        for t in range(niter):
            map_coordinates(dP, p[0], p[1], dPt)
            for k in range(len(p)):
                p[k] = np.minimum(shape[k] - 1, np.maximum(0, p[k] + dPt[k]))
        return p

@njit("(float32[:,:],float32[:,:,:,:], int32)", nogil=True)
def steps3D(p, dP, niter):
    """ Run dynamics of pixels to recover masks in 3D.

    Euler integration of dynamics dP for niter steps.

    Args:
        p (np.ndarray): Pixels with cellprob > cellprob_threshold [3 x npts].
        dP (np.ndarray): Flows [3 x Lz x Ly x Lx].
        niter (int): Number of iterations of dynamics to run.

    Returns:
        np.ndarray: Final locations of each pixel after dynamics.
    """
    shape = dP.shape[1:]
    for t in range(niter):
        for j in range(p.shape[1]):
            p0, p1, p2 = int(p[0, j]), int(p[1, j]), int(p[2, j])
            step = dP[:, p0, p1, p2]
            for k in range(3):
                p[k, j] = min(shape[k] - 1, max(0, p[k, j] + step[k]))
    return p

@njit("(float32[:,:], float32[:,:,:], int32)", nogil=True)
def steps2D(p, dP, niter):
    """Run dynamics of pixels to recover masks in 2D.

    Euler integration of dynamics dP for niter steps.

    Args:
        p (np.ndarray): Pixels with cellprob > cellprob_threshold [2 x npts].
        dP (np.ndarray): Flows [2 x Ly x Lx].
        niter (int): Number of iterations of dynamics to run.

    Returns:
        np.ndarray: Final locations of each pixel after dynamics.
    """
    shape = dP.shape[1:]
    for t in range(niter):
        for j in range(p.shape[1]):
            # starting coordinates
            p0, p1 = int(p[0, j]), int(p[1, j])
            step = dP[:, p0, p1]
            for k in range(p.shape[0]):
                p[k, j] = min(shape[k] - 1, max(0, p[k, j] + step[k]))
    return p

def follow_flows(dP, inds, niter=200, interp=True, device=torch.device("cpu")):
    """ Run dynamics to recover masks in 2D or 3D.

    Pixels are represented as a meshgrid. Only pixels with non-zero cell-probability
    are used (as defined by inds).

    Args:
        dP (np.ndarray): Flows [axis x Ly x Lx] or [axis x Lz x Ly x Lx].
        mask (np.ndarray, optional): Pixel mask to seed masks. Useful when flows have low magnitudes.
        niter (int, optional): Number of iterations of dynamics to run. Default is 200.
        interp (bool, optional): Interpolate during 2D dynamics (not available in 3D). Default is True.
        device (torch.device, optional): Device to use for computation. Default is None.

    Returns:
        A tuple containing (p, inds): p (np.ndarray): Final locations of each pixel after dynamics; [axis x Ly x Lx] or [axis x Lz x Ly x Lx]; 
        inds (np.ndarray): Indices of pixels used for dynamics; [axis x Ly x Lx] or [axis x Lz x Ly x Lx].
    """
    shape = np.array(dP.shape[1:]).astype(np.int32)
    ndim = len(inds)
    niter = np.uint32(niter)

    if interp:
        p = steps_interp(dP, inds, niter, device=device)
    else:
        p = np.zeros((ndim, len(inds[0])), "float32")
        for n in range(ndim):
            p[n] = inds[n]        
        steps_fcn = steps2D if ndim == 2 else steps3D
        p = steps_fcn(p, dP, niter)
        
    return p


def remove_bad_flow_masks(masks, flows, threshold=0.4, device=torch.device("cpu")):
    """Remove masks which have inconsistent flows.

    Uses metrics.flow_error to compute flows from predicted masks 
    and compare flows to predicted flows from the network. Discards 
    masks with flow errors greater than the threshold.

    Args:
        masks (int, 2D or 3D array): Labelled masks, 0=NO masks; 1,2,...=mask labels,
            size [Ly x Lx] or [Lz x Ly x Lx].
        flows (float, 3D or 4D array): Flows [axis x Ly x Lx] or [axis x Lz x Ly x Lx].
        threshold (float, optional): Masks with flow error greater than threshold are discarded.
            Default is 0.4.

    Returns:
        masks (int, 2D or 3D array): Masks with inconsistent flow masks removed,
            0=NO masks; 1,2,...=mask labels, size [Ly x Lx] or [Lz x Ly x Lx].
    """
    device0 = device
    if masks.size > 10000 * 10000 and (device is not None and device.type == "cuda"):

        major_version, minor_version = torch.__version__.split(".")[:2]
        torch.cuda.empty_cache()
        if major_version == "1" and int(minor_version) < 10:
            # for PyTorch version lower than 1.10
            def mem_info():
                total_mem = torch.cuda.get_device_properties(device0.index).total_memory
                used_mem = torch.cuda.memory_allocated(device0.index)
                free_mem = total_mem - used_mem
                return total_mem, free_mem
        else:
            # for PyTorch version 1.10 and above
            def mem_info():
                free_mem, total_mem = torch.cuda.mem_get_info(device0.index)
                return total_mem, free_mem
        total_mem, free_mem = mem_info()
        if masks.size * 32 > free_mem:
            dynamics_logger.warning(
                "WARNING: image is very large, not using gpu to compute flows from masks for QC step flow_threshold"
            )
            dynamics_logger.info("turn off QC step with flow_threshold=0 if too slow")
            device0 = torch.device("cpu")

    merrors, _ = metrics.flow_error(masks, flows, device0)
    badi = 1 + (merrors > threshold).nonzero()[0]
    masks[np.isin(masks, badi)] = 0
    return masks


def max_pool3d(h, kernel_size=5):
    """ memory efficient max_pool thanks to Mark Kittisopikul 
    
    for stride=1, padding=kernel_size//2, requires odd kernel_size >= 3
    
    """
    _, nd, ny, nx = h.shape
    m = h.clone().detach()
    kruns, k0 = kernel_size // 2, 1
    for k in range(kruns):
        for d in range(-k0, k0+1):
            for y in range(-k0, k0+1):
                for x in range(-k0, k0+1):
                    mv = m[:, max(-d,0):min(nd-d,nd), max(-y,0):min(ny-y,ny), max(-x,0):min(nx-x,nx)]
                    hv = h[:,  max(d,0):min(nd+d,nd),  max(y,0):min(ny+y,ny),  max(x,0):min(nx+x,nx)]
                    torch.maximum(mv, hv, out=mv)
    return m

def max_pool2d(h, kernel_size=5):
    """ memory efficient max_pool thanks to Mark Kittisopikul """
    _, ny, nx = h.shape
    m = h.clone().detach()
    k0 = kernel_size // 2
    for y in range(-k0, k0+1):
        for x in range(-k0, k0+1):
            mv = m[:, max(-y,0):min(ny-y,ny), max(-x,0):min(nx-x,nx)]
            hv = h[:, max(y,0):min(ny+y,ny),  max(x,0):min(nx+x,nx)]
            torch.maximum(mv, hv, out=mv)
    return m

def max_pool1d(h, kernel_size=5, axis=1, out=None):
    """ memory efficient max_pool thanks to Mark Kittisopikul 
    
    for stride=1, padding=kernel_size//2, requires odd kernel_size >= 3

    """
    if out is None:
        out = h.clone()
    else:
        out.copy_(h)

    nd = h.shape[axis]    
    k0 = kernel_size // 2
    for d in range(-k0, k0+1):
        if axis==1:
            mv = out[:, max(-d,0):min(nd-d,nd)]
            hv = h[:, max(d,0):min(nd+d,nd)]
        elif axis==2:
            mv = out[:, :, max(-d,0):min(nd-d,nd)]
            hv = h[:,  :, max(d,0):min(nd+d,nd)]
        elif axis==3:
            mv = out[:, :, :, max(-d,0):min(nd-d,nd)]
            hv = h[:, :,  :, max(d,0):min(nd+d,nd)]
        torch.maximum(mv, hv, out=mv)
    return out

def max_pool_nd(h, kernel_size=5):
    """ memory efficient max_pool in 2d or 3d """
    ndim = h.ndim - 1
    hmax = max_pool1d(h, kernel_size=kernel_size, axis=1)
    hmax2 = max_pool1d(hmax, kernel_size=kernel_size, axis=2)
    if ndim==2:
        del hmax
        return hmax2
    else:
        hmax = max_pool1d(hmax2, kernel_size=kernel_size, axis=3, out=hmax)
        del hmax2 
        return hmax

# from torch.nn.functional import max_pool2d
def get_masks_torch(pt, inds, shape0, rpad=20, max_size_fraction=0.4):
    """Create masks using pixel convergence after running dynamics.

    Makes a histogram of final pixel locations p, initializes masks 
    at peaks of histogram and extends the masks from the peaks so that
    they include all pixels with more than 2 final pixels p. Discards 
    masks with flow errors greater than the threshold. 

    Parameters:
        p (float32, 3D or 4D array): Final locations of each pixel after dynamics,
            size [axis x Ly x Lx] or [axis x Lz x Ly x Lx].
        iscell (bool, 2D or 3D array): If iscell is not None, set pixels that are 
            iscell False to stay in their original location.
        rpad (int, optional): Histogram edge padding. Default is 20.
        max_size_fraction (float, optional): Masks larger than max_size_fraction of
            total image size are removed. Default is 0.4.

    Returns:
        M0 (int, 2D or 3D array): Masks with inconsistent flow masks removed, 
            0=NO masks; 1,2,...=mask labels, size [Ly x Lx] or [Lz x Ly x Lx].
    """
    
    ndim = len(shape0)
    device = pt.device
    
    rpad = 20
    pt += rpad
    pt = torch.clamp(pt, min=0)
    for i in range(len(pt)):
        pt[i] = torch.clamp(pt[i], max=shape0[i]+rpad-1)

    # # add extra padding to make divisible by 5
    # shape = tuple((np.ceil((shape0 + 2*rpad)/5) * 5).astype(int))
    shape = tuple(np.array(shape0) + 2*rpad)

    # sparse coo torch
    coo = torch.sparse_coo_tensor(pt, torch.ones(pt.shape[1], device=pt.device, dtype=torch.int), 
                                shape)
    h1 = coo.to_dense()
    del coo

    hmax1 = max_pool_nd(h1.unsqueeze(0), kernel_size=5)
    hmax1 = hmax1.squeeze()
    seeds1 = torch.nonzero((h1 - hmax1 > -1e-6) * (h1 > 10))
    del hmax1
    if len(seeds1) == 0:
        dynamics_logger.warning("no seeds found in get_masks_torch - no masks found.")
        return np.zeros(shape0, dtype="uint16")
    
    npts = h1[tuple(seeds1.T)]
    isort1 = npts.argsort()
    seeds1 = seeds1[isort1]

    n_seeds = len(seeds1)
    h_slc = torch.zeros((n_seeds, *[11]*ndim), device=seeds1.device)
    for k in range(n_seeds):
        slc = tuple([slice(seeds1[k][j]-5, seeds1[k][j]+6) for j in range(ndim)])
        h_slc[k] = h1[slc]
    del h1
    seed_masks = torch.zeros((n_seeds, *[11]*ndim), device=seeds1.device)
    if ndim==2:
        seed_masks[:,5,5] = 1
    else:
        seed_masks[:,5,5,5] = 1
    
    for iter in range(5):
        # extend
        seed_masks = max_pool_nd(seed_masks, kernel_size=3)
        seed_masks *= h_slc > 2
    del h_slc 
    seeds_new = [tuple((torch.nonzero(seed_masks[k]) + seeds1[k] - 5).T) 
            for k in range(n_seeds)]
    del seed_masks 
    
    dtype = torch.int32 if n_seeds < 2**16 else torch.int64
    M1 = torch.zeros(shape, dtype=dtype, device=device)
    for k in range(n_seeds):
        M1[seeds_new[k]] = 1 + k

    M1 = M1[tuple(pt.long())]
    M1 = M1.cpu().numpy()

    dtype = "uint16" if n_seeds < 2**16 else "uint32"
    M0 = np.zeros(shape0, dtype=dtype)
    M0[inds] = M1
        
    # remove big masks
    uniq, counts = fastremap.unique(M0, return_counts=True)
    big = np.prod(shape0) * max_size_fraction
    bigc = uniq[counts > big]
    if len(bigc) > 0 and (len(bigc) > 1 or bigc[0] != 0):
        M0 = fastremap.mask(M0, bigc)
    fastremap.renumber(M0, in_place=True)  #convenient to guarantee non-skipped labels
    M0 = M0.reshape(tuple(shape0))
    
    #print(f"mem used: {torch.cuda.memory_allocated()/1e9:.3f} gb, max mem used: {torch.cuda.max_memory_allocated()/1e9:.3f} gb")
    return M0


def resize_and_compute_masks(dP, cellprob, niter=200, cellprob_threshold=0.0,
                             flow_threshold=0.4, interp=True, do_3D=False, min_size=15,
                             max_size_fraction=0.4, resize=None, device=torch.device("cpu")):
    """Compute masks using dynamics from dP and cellprob, and resizes masks if resize is not None.

    Args:
        dP (numpy.ndarray): The dynamics flow field array.
        cellprob (numpy.ndarray): The cell probability array.
        p (numpy.ndarray, optional): The pixels on which to run dynamics. Defaults to None
        niter (int, optional): The number of iterations for mask computation. Defaults to 200.
        cellprob_threshold (float, optional): The threshold for cell probability. Defaults to 0.0.
        flow_threshold (float, optional): The threshold for quality control metrics. Defaults to 0.4.
        interp (bool, optional): Whether to interpolate during dynamics computation. Defaults to True.
        do_3D (bool, optional): Whether to perform mask computation in 3D. Defaults to False.
        min_size (int, optional): The minimum size of the masks. Defaults to 15.
        max_size_fraction (float, optional): Masks larger than max_size_fraction of
            total image size are removed. Default is 0.4.
        resize (tuple, optional): The desired size for resizing the masks. Defaults to None.
        device (torch.device, optional): The device to use for computation. Defaults to torch.device("cpu").

    Returns:
        tuple: A tuple containing the computed masks and the final pixel locations.
    """
    mask = compute_masks(dP, cellprob, niter=niter,
                            cellprob_threshold=cellprob_threshold,
                            flow_threshold=flow_threshold, interp=interp, do_3D=do_3D,
                            max_size_fraction=max_size_fraction, 
                            device=device)

    if resize is not None:
        if len(resize) == 2:
            mask = transforms.resize_image(mask, resize[0], resize[1], no_channels=True,
                                           interpolation=cv2.INTER_NEAREST)
        else:
            Lz, Ly, Lx = resize
            if mask.shape[0] != Lz or mask.shape[1] != Ly:
                dynamics_logger.info("resizing 3D masks to original image size")
                if mask.shape[1] != Ly:
                    mask = transforms.resize_image(mask, Ly=Ly, Lx=Lx,
                                                no_channels=True, 
                                                interpolation=cv2.INTER_NEAREST)
                if mask.shape[0] != Lz:
                    mask = transforms.resize_image(mask.transpose(1,0,2),
                                                    Ly=Lz, Lx=Lx,
                                                    no_channels=True, 
                                                    interpolation=cv2.INTER_NEAREST).transpose(1,0,2)

    mask = utils.fill_holes_and_remove_small_masks(mask, min_size=min_size)

    return mask

def compute_masks(dP, cellprob, p=None, niter=200, cellprob_threshold=0.0,
                  flow_threshold=0.4, interp=True, do_3D=False, min_size=-1,
                  max_size_fraction=0.4, device=torch.device("cpu")):
    """Compute masks using dynamics from dP and cellprob.

    Args:
        dP (numpy.ndarray): The dynamics flow field array.
        cellprob (numpy.ndarray): The cell probability array.
        p (numpy.ndarray, optional): The pixels on which to run dynamics. Defaults to None
        niter (int, optional): The number of iterations for mask computation. Defaults to 200.
        cellprob_threshold (float, optional): The threshold for cell probability. Defaults to 0.0.
        flow_threshold (float, optional): The threshold for quality control metrics. Defaults to 0.4.
        interp (bool, optional): Whether to interpolate during dynamics computation. Defaults to True.
        do_3D (bool, optional): Whether to perform mask computation in 3D. Defaults to False.
        min_size (int, optional): The minimum size of the masks. Defaults to 15.
        max_size_fraction (float, optional): Masks larger than max_size_fraction of
            total image size are removed. Default is 0.4.
        device (torch.device, optional): The device to use for computation. Defaults to torch.device("cpu").

    Returns:
        tuple: A tuple containing the computed masks and the final pixel locations.
    """
    
    if (cellprob > cellprob_threshold).sum():  #mask at this point is a cell cluster binary map, not labels
        inds = np.nonzero(cellprob > cellprob_threshold)
        if len(inds[0]) == 0:
            dynamics_logger.info("No cell pixels found.")
            shape = cellprob.shape
            mask = np.zeros(shape, "uint16")
            return mask

        p_final = follow_flows(dP * (cellprob > cellprob_threshold) / 5., 
                               inds=inds, niter=niter, interp=interp,
                                device=device)
        if not torch.is_tensor(p_final):
            p_final = torch.from_numpy(p_final).to(device, dtype=torch.int)
        else:
            p_final = p_final.int()
        # calculate masks
        if device.type == "mps":
            p_final = p_final.to(torch.device("cpu"))
        mask = get_masks_torch(p_final, inds, dP.shape[1:], 
                               max_size_fraction=max_size_fraction)
        del p_final
        # flow thresholding factored out of get_masks
        if not do_3D:
            if mask.max() > 0 and flow_threshold is not None and flow_threshold > 0:
                # make sure labels are unique at output of get_masks
                mask = remove_bad_flow_masks(mask, dP, threshold=flow_threshold,
                                             device=device)

        if mask.max() < 2**16 and mask.dtype != "uint16":
            mask = mask.astype("uint16")

    else:  # nothing to compute, just make it compatible
        dynamics_logger.info("No cell pixels found.")
        shape = cellprob.shape
        mask = np.zeros(cellprob.shape, "uint16")
        return mask
    
    if min_size > 0:
        mask = utils.fill_holes_and_remove_small_masks(mask, min_size=min_size)

    if mask.dtype == np.uint32:
        dynamics_logger.warning(
            "more than 65535 masks in image, masks returned as np.uint32")

    return mask

def get_masks_orig(p, iscell=None, rpad=20, max_size_fraction=0.4):
    """Create masks using pixel convergence after running dynamics.

    Original implementation on CPU with histogramdd
    (histogramdd uses excessive memory with large images)

    Makes a histogram of final pixel locations p, initializes masks 
    at peaks of histogram and extends the masks from the peaks so that
    they include all pixels with more than 2 final pixels p. Discards 
    masks with flow errors greater than the threshold. 

    Parameters:
        p (float32, 3D or 4D array): Final locations of each pixel after dynamics,
            size [axis x Ly x Lx] or [axis x Lz x Ly x Lx].
        iscell (bool, 2D or 3D array): If iscell is not None, set pixels that are 
            iscell False to stay in their original location.
        rpad (int, optional): Histogram edge padding. Default is 20.
        max_size_fraction (float, optional): Masks larger than max_size_fraction of
            total image size are removed. Default is 0.4.

    Returns:
        M0 (int, 2D or 3D array): Masks with inconsistent flow masks removed, 
            0=NO masks; 1,2,...=mask labels, size [Ly x Lx] or [Lz x Ly x Lx].
    """
    pflows = []
    edges = []
    shape0 = p.shape[1:]
    dims = len(p)
    if iscell is not None:
        if dims == 3:
            inds = np.meshgrid(np.arange(shape0[0]), np.arange(shape0[1]),
                               np.arange(shape0[2]), indexing="ij")
        elif dims == 2:
            inds = np.meshgrid(np.arange(shape0[0]), np.arange(shape0[1]),
                               indexing="ij")
        for i in range(dims):
            p[i, ~iscell] = inds[i][~iscell]

    for i in range(dims):
        pflows.append(p[i].flatten().astype("int32"))
        edges.append(np.arange(-.5 - rpad, shape0[i] + .5 + rpad, 1))

    h, _ = np.histogramdd(tuple(pflows), bins=edges)
    hmax = h.copy()
    for i in range(dims):
        hmax = maximum_filter1d(hmax, 5, axis=i)

    seeds = np.nonzero(np.logical_and(h - hmax > -1e-6, h > 10))
    Nmax = h[seeds]
    isort = np.argsort(Nmax)[::-1]
    for s in seeds:
        s[:] = s[isort]

    pix = list(np.array(seeds).T)

    shape = h.shape
    if dims == 3:
        expand = np.nonzero(np.ones((3, 3, 3)))
    else:
        expand = np.nonzero(np.ones((3, 3)))

    for iter in range(5):
        for k in range(len(pix)):
            if iter == 0:
                pix[k] = list(pix[k])
            newpix = []
            iin = []
            for i, e in enumerate(expand):
                epix = e[:, np.newaxis] + np.expand_dims(pix[k][i], 0) - 1
                epix = epix.flatten()
                iin.append(np.logical_and(epix >= 0, epix < shape[i]))
                newpix.append(epix)
            iin = np.all(tuple(iin), axis=0)
            for p in newpix:
                p = p[iin]
            newpix = tuple(newpix)
            igood = h[newpix] > 2
            for i in range(dims):
                pix[k][i] = newpix[i][igood]
            if iter == 4:
                pix[k] = tuple(pix[k])

    M = np.zeros(h.shape, np.uint32)
    for k in range(len(pix)):
        M[pix[k]] = 1 + k

    for i in range(dims):
        pflows[i] = pflows[i] + rpad
    M0 = M[tuple(pflows)]

    # remove big masks
    uniq, counts = fastremap.unique(M0, return_counts=True)
    big = np.prod(shape0) * max_size_fraction
    bigc = uniq[counts > big]
    if len(bigc) > 0 and (len(bigc) > 1 or bigc[0] != 0):
        M0 = fastremap.mask(M0, bigc)
    fastremap.renumber(M0, in_place=True)  #convenient to guarantee non-skipped labels
    M0 = np.reshape(M0, shape0)
    return M0