File size: 15,705 Bytes
9060565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
"""Auxiliary module for bioimageio format export

Example usage:

```bash
#!/bin/bash

# Define default paths and parameters
DEFAULT_CHANNELS="1 0"
DEFAULT_PATH_PRETRAINED_MODEL="/home/qinyu/models/cp/cellpose_residual_on_style_on_concatenation_off_1135_rest_2023_05_04_23_41_31.252995"
DEFAULT_PATH_README="/home/qinyu/models/cp/README.md"
DEFAULT_LIST_PATH_COVER_IMAGES="/home/qinyu/images/cp/cellpose_raw_and_segmentation.jpg /home/qinyu/images/cp/cellpose_raw_and_probability.jpg /home/qinyu/images/cp/cellpose_raw.jpg"
DEFAULT_MODEL_ID="philosophical-panda"
DEFAULT_MODEL_ICON="🐼"
DEFAULT_MODEL_VERSION="0.1.0"
DEFAULT_MODEL_NAME="My Cool Cellpose"
DEFAULT_MODEL_DOCUMENTATION="A cool Cellpose model trained for my cool dataset."
DEFAULT_MODEL_AUTHORS='[{"name": "Qin Yu", "affiliation": "EMBL", "github_user": "qin-yu", "orcid": "0000-0002-4652-0795"}]'
DEFAULT_MODEL_CITE='[{"text": "For more details of the model itself, see the manuscript", "doi": "10.1242/dev.202800", "url": null}]'
DEFAULT_MODEL_TAGS="cellpose 3d 2d"
DEFAULT_MODEL_LICENSE="MIT"
DEFAULT_MODEL_REPO="https://github.com/kreshuklab/go-nuclear"

# Run the Python script with default parameters
python export.py \
    --channels $DEFAULT_CHANNELS \
    --path_pretrained_model "$DEFAULT_PATH_PRETRAINED_MODEL" \
    --path_readme "$DEFAULT_PATH_README" \
    --list_path_cover_images $DEFAULT_LIST_PATH_COVER_IMAGES \
    --model_version "$DEFAULT_MODEL_VERSION" \
    --model_name "$DEFAULT_MODEL_NAME" \
    --model_documentation "$DEFAULT_MODEL_DOCUMENTATION" \
    --model_authors "$DEFAULT_MODEL_AUTHORS" \
    --model_cite "$DEFAULT_MODEL_CITE" \
    --model_tags $DEFAULT_MODEL_TAGS \
    --model_license "$DEFAULT_MODEL_LICENSE" \
    --model_repo "$DEFAULT_MODEL_REPO"
```
"""

import os
import sys
import json
import argparse
from pathlib import Path
from urllib.parse import urlparse

import torch
import numpy as np

from cellpose.io import imread
from cellpose.utils import download_url_to_file
from cellpose.transforms import pad_image_ND, normalize_img, convert_image
from cellpose.resnet_torch import CPnetBioImageIO

from bioimageio.spec.model.v0_5 import (
    ArchitectureFromFileDescr,
    Author,
    AxisId,
    ChannelAxis,
    CiteEntry,
    Doi,
    FileDescr,
    Identifier,
    InputTensorDescr,
    IntervalOrRatioDataDescr,
    LicenseId,
    ModelDescr,
    ModelId,
    OrcidId,
    OutputTensorDescr,
    ParameterizedSize,
    PytorchStateDictWeightsDescr,
    SizeReference,
    SpaceInputAxis,
    SpaceOutputAxis,
    TensorId,
    TorchscriptWeightsDescr,
    Version,
    WeightsDescr,
)
# Define ARBITRARY_SIZE if it is not available in the module
try:
    from bioimageio.spec.model.v0_5 import ARBITRARY_SIZE
except ImportError:
    ARBITRARY_SIZE = ParameterizedSize(min=1, step=1)

from bioimageio.spec.common import HttpUrl
from bioimageio.spec import save_bioimageio_package
from bioimageio.core import test_model

DEFAULT_CHANNELS = [2, 1]
DEFAULT_NORMALIZE_PARAMS = {
    "axis": -1,
    "lowhigh": None,
    "percentile": None,
    "normalize": True,
    "norm3D": False,
    "sharpen_radius": 0,
    "smooth_radius": 0,
    "tile_norm_blocksize": 0,
    "tile_norm_smooth3D": 1,
    "invert": False,
}
IMAGE_URL = "http://www.cellpose.org/static/data/rgb_3D.tif"


def download_and_normalize_image(path_dir_temp, channels=DEFAULT_CHANNELS):
    """
    Download and normalize image.
    """
    filename = os.path.basename(urlparse(IMAGE_URL).path)
    path_image = path_dir_temp / filename
    if not path_image.exists():
        sys.stderr.write(f'Downloading: "{IMAGE_URL}" to {path_image}\n')
        download_url_to_file(IMAGE_URL, path_image)
    img = imread(path_image).astype(np.float32)
    img = convert_image(img, channels, channel_axis=1, z_axis=0, do_3D=False, nchan=2)
    img = normalize_img(img, **DEFAULT_NORMALIZE_PARAMS)
    img = np.transpose(img, (0, 3, 1, 2))
    img, _, _ = pad_image_ND(img)
    return img


def load_bioimageio_cpnet_model(path_model_weight, nchan=2):
    cpnet_kwargs = {
        "nbase": [nchan, 32, 64, 128, 256],
        "nout": 3,
        "sz": 3,
        "mkldnn": False,
        "conv_3D": False,
        "max_pool": True,
    }
    cpnet_biio = CPnetBioImageIO(**cpnet_kwargs)
    state_dict_cuda = torch.load(path_model_weight, map_location=torch.device("cpu"), weights_only=True)
    cpnet_biio.load_state_dict(state_dict_cuda)
    cpnet_biio.eval()  # crucial for the prediction results
    return cpnet_biio, cpnet_kwargs


def descr_gen_input(path_test_input, nchan=2):
    input_axes = [
        SpaceInputAxis(id=AxisId("z"), size=ARBITRARY_SIZE),
        ChannelAxis(channel_names=[Identifier(f"c{i+1}") for i in range(nchan)]),
        SpaceInputAxis(id=AxisId("y"), size=ParameterizedSize(min=16, step=16)),
        SpaceInputAxis(id=AxisId("x"), size=ParameterizedSize(min=16, step=16)),
    ]
    data_descr = IntervalOrRatioDataDescr(type="float32")
    path_test_input = Path(path_test_input)
    descr_input = InputTensorDescr(
        id=TensorId("raw"),
        axes=input_axes,
        test_tensor=FileDescr(source=path_test_input),
        data=data_descr,
    )
    return descr_input


def descr_gen_output_flow(path_test_output):
    output_axes_output_tensor = [
        SpaceOutputAxis(id=AxisId("z"), size=SizeReference(tensor_id=TensorId("raw"), axis_id=AxisId("z"))),
        ChannelAxis(channel_names=[Identifier("flow1"), Identifier("flow2"), Identifier("flow3")]),
        SpaceOutputAxis(id=AxisId("y"), size=SizeReference(tensor_id=TensorId("raw"), axis_id=AxisId("y"))),
        SpaceOutputAxis(id=AxisId("x"), size=SizeReference(tensor_id=TensorId("raw"), axis_id=AxisId("x"))),
    ]
    path_test_output = Path(path_test_output)
    descr_output = OutputTensorDescr(
        id=TensorId("flow"),
        axes=output_axes_output_tensor,
        test_tensor=FileDescr(source=path_test_output),
    )
    return descr_output


def descr_gen_output_downsampled(path_dir_temp, nbase=None):
    if nbase is None:
        nbase = [32, 64, 128, 256]

    output_axes_downsampled_tensors = [
        [
            SpaceOutputAxis(id=AxisId("z"), size=SizeReference(tensor_id=TensorId("raw"), axis_id=AxisId("z"))),
            ChannelAxis(channel_names=[Identifier(f"feature{i+1}") for i in range(base)]),
            SpaceOutputAxis(
                id=AxisId("y"),
                size=SizeReference(tensor_id=TensorId("raw"), axis_id=AxisId("y")),
                scale=2**offset,
            ),
            SpaceOutputAxis(
                id=AxisId("x"),
                size=SizeReference(tensor_id=TensorId("raw"), axis_id=AxisId("x")),
                scale=2**offset,
            ),
        ]
        for offset, base in enumerate(nbase)
    ]
    path_downsampled_tensors = [
        Path(path_dir_temp / f"test_downsampled_{i}.npy") for i in range(len(output_axes_downsampled_tensors))
    ]
    descr_output_downsampled_tensors = [
        OutputTensorDescr(
            id=TensorId(f"downsampled_{i}"),
            axes=axes,
            test_tensor=FileDescr(source=path),
        )
        for i, (axes, path) in enumerate(zip(output_axes_downsampled_tensors, path_downsampled_tensors))
    ]
    return descr_output_downsampled_tensors


def descr_gen_output_style(path_test_style, nchannel=256):
    output_axes_style_tensor = [
        SpaceOutputAxis(id=AxisId("z"), size=SizeReference(tensor_id=TensorId("raw"), axis_id=AxisId("z"))),
        ChannelAxis(channel_names=[Identifier(f"feature{i+1}") for i in range(nchannel)]),
    ]
    path_style_tensor = Path(path_test_style)
    descr_output_style_tensor = OutputTensorDescr(
        id=TensorId("style"),
        axes=output_axes_style_tensor,
        test_tensor=FileDescr(source=path_style_tensor),
    )
    return descr_output_style_tensor


def descr_gen_arch(cpnet_kwargs, path_cpnet_wrapper=None):
    if path_cpnet_wrapper is None:
        path_cpnet_wrapper = Path(__file__).parent / "resnet_torch.py"
    pytorch_architecture = ArchitectureFromFileDescr(
        callable=Identifier("CPnetBioImageIO"),
        source=Path(path_cpnet_wrapper),
        kwargs=cpnet_kwargs,
    )
    return pytorch_architecture


def descr_gen_documentation(path_doc, markdown_text):
    with open(path_doc, "w") as f:
        f.write(markdown_text)


def package_to_bioimageio(
    path_pretrained_model,
    path_save_trace,
    path_readme,
    list_path_cover_images,
    descr_input,
    descr_output,
    descr_output_downsampled_tensors,
    descr_output_style_tensor,
    pytorch_version,
    pytorch_architecture,
    model_id,
    model_icon,
    model_version,
    model_name,
    model_documentation,
    model_authors,
    model_cite,
    model_tags,
    model_license,
    model_repo,
):
    """Package model description to BioImage.IO format."""
    my_model_descr = ModelDescr(
        id=ModelId(model_id) if model_id is not None else None,
        id_emoji=model_icon,
        version=Version(model_version),
        name=model_name,
        description=model_documentation,
        authors=[
            Author(
                name=author["name"],
                affiliation=author["affiliation"],
                github_user=author["github_user"],
                orcid=OrcidId(author["orcid"]),
            )
            for author in model_authors
        ],
        cite=[CiteEntry(text=cite["text"], doi=Doi(cite["doi"]), url=cite["url"]) for cite in model_cite],
        covers=[Path(img) for img in list_path_cover_images],
        license=LicenseId(model_license),
        tags=model_tags,
        documentation=Path(path_readme),
        git_repo=HttpUrl(model_repo),
        inputs=[descr_input],
        outputs=[descr_output, descr_output_style_tensor] + descr_output_downsampled_tensors,
        weights=WeightsDescr(
            pytorch_state_dict=PytorchStateDictWeightsDescr(
                source=Path(path_pretrained_model),
                architecture=pytorch_architecture,
                pytorch_version=pytorch_version,
            ),
            torchscript=TorchscriptWeightsDescr(
                source=Path(path_save_trace),
                pytorch_version=pytorch_version,
                parent="pytorch_state_dict",  # these weights were converted from the pytorch_state_dict weights.
            ),
        ),
    )

    return my_model_descr


def parse_args():
    # fmt: off
    parser = argparse.ArgumentParser(description="BioImage.IO model packaging for Cellpose")
    parser.add_argument("--channels", nargs=2, default=[2, 1], type=int, help="Cyto-only = [2, 0], Cyto + Nuclei = [2, 1], Nuclei-only = [1, 0]")
    parser.add_argument("--path_pretrained_model", required=True, type=str, help="Path to pretrained model file, e.g., cellpose_residual_on_style_on_concatenation_off_1135_rest_2023_05_04_23_41_31.252995")
    parser.add_argument("--path_readme", required=True, type=str, help="Path to README file")
    parser.add_argument("--list_path_cover_images", nargs='+', required=True, type=str, help="List of paths to cover images")
    parser.add_argument("--model_id", type=str, help="Model ID, provide if already exists", default=None)
    parser.add_argument("--model_icon", type=str, help="Model icon, provide if already exists", default=None)
    parser.add_argument("--model_version", required=True, type=str, help="Model version, new model should be 0.1.0")
    parser.add_argument("--model_name", required=True, type=str, help="Model name, e.g., My Cool Cellpose")
    parser.add_argument("--model_documentation", required=True, type=str, help="Model documentation, e.g., A cool Cellpose model trained for my cool dataset.")
    parser.add_argument("--model_authors", required=True, type=str, help="Model authors in JSON format, e.g., '[{\"name\": \"Qin Yu\", \"affiliation\": \"EMBL\", \"github_user\": \"qin-yu\", \"orcid\": \"0000-0002-4652-0795\"}]'")
    parser.add_argument("--model_cite", required=True, type=str, help="Model citation in JSON format, e.g., '[{\"text\": \"For more details of the model itself, see the manuscript\", \"doi\": \"10.1242/dev.202800\", \"url\": null}]'")
    parser.add_argument("--model_tags", nargs='+', required=True, type=str, help="Model tags, e.g., cellpose 3d 2d")
    parser.add_argument("--model_license", required=True, type=str, help="Model license, e.g., MIT")
    parser.add_argument("--model_repo", required=True, type=str, help="Model repository URL")
    return parser.parse_args()
    # fmt: on


def main():
    args = parse_args()

    # Parse user-provided paths and arguments
    channels = args.channels
    model_cite = json.loads(args.model_cite)
    model_authors = json.loads(args.model_authors)

    path_readme = Path(args.path_readme)
    path_pretrained_model = Path(args.path_pretrained_model)
    list_path_cover_images = [Path(path_image) for path_image in args.list_path_cover_images]

    # Auto-generated paths
    path_cpnet_wrapper = Path(__file__).resolve().parent / "resnet_torch.py"
    path_dir_temp = Path(__file__).resolve().parent.parent / "models" / path_pretrained_model.stem
    path_dir_temp.mkdir(parents=True, exist_ok=True)

    path_save_trace = path_dir_temp / "cp_traced.pt"
    path_test_input = path_dir_temp / "test_input.npy"
    path_test_output = path_dir_temp / "test_output.npy"
    path_test_style = path_dir_temp / "test_style.npy"
    path_bioimageio_package = path_dir_temp / "cellpose_model.zip"

    # Download test input image
    img_np = download_and_normalize_image(path_dir_temp, channels=channels)
    np.save(path_test_input, img_np)
    img = torch.tensor(img_np).float()

    # Load model
    cpnet_biio, cpnet_kwargs = load_bioimageio_cpnet_model(path_pretrained_model)

    # Test model and save output
    tuple_output_tensor = cpnet_biio(img)
    np.save(path_test_output, tuple_output_tensor[0].detach().numpy())
    np.save(path_test_style, tuple_output_tensor[1].detach().numpy())
    for i, t in enumerate(tuple_output_tensor[2:]):
        np.save(path_dir_temp / f"test_downsampled_{i}.npy", t.detach().numpy())

    # Save traced model
    model_traced = torch.jit.trace(cpnet_biio, img)
    model_traced.save(path_save_trace)

    # Generate model description
    descr_input = descr_gen_input(path_test_input)
    descr_output = descr_gen_output_flow(path_test_output)
    descr_output_downsampled_tensors = descr_gen_output_downsampled(path_dir_temp, nbase=cpnet_biio.nbase[1:])
    descr_output_style_tensor = descr_gen_output_style(path_test_style, cpnet_biio.nbase[-1])
    pytorch_version = Version(torch.__version__)
    pytorch_architecture = descr_gen_arch(cpnet_kwargs, path_cpnet_wrapper)

    # Package model
    my_model_descr = package_to_bioimageio(
        path_pretrained_model,
        path_save_trace,
        path_readme,
        list_path_cover_images,
        descr_input,
        descr_output,
        descr_output_downsampled_tensors,
        descr_output_style_tensor,
        pytorch_version,
        pytorch_architecture,
        args.model_id,
        args.model_icon,
        args.model_version,
        args.model_name,
        args.model_documentation,
        model_authors,
        model_cite,
        args.model_tags,
        args.model_license,
        args.model_repo,
    )

    # Test model
    summary = test_model(my_model_descr, weight_format="pytorch_state_dict")
    summary.display()
    summary = test_model(my_model_descr, weight_format="torchscript")
    summary.display()

    # Save BioImage.IO package
    package_path = save_bioimageio_package(my_model_descr, output_path=Path(path_bioimageio_package))
    print("package path:", package_path)


if __name__ == "__main__":
    main()