Spaces:
Sleeping
Sleeping
File size: 15,705 Bytes
9060565 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
"""Auxiliary module for bioimageio format export
Example usage:
```bash
#!/bin/bash
# Define default paths and parameters
DEFAULT_CHANNELS="1 0"
DEFAULT_PATH_PRETRAINED_MODEL="/home/qinyu/models/cp/cellpose_residual_on_style_on_concatenation_off_1135_rest_2023_05_04_23_41_31.252995"
DEFAULT_PATH_README="/home/qinyu/models/cp/README.md"
DEFAULT_LIST_PATH_COVER_IMAGES="/home/qinyu/images/cp/cellpose_raw_and_segmentation.jpg /home/qinyu/images/cp/cellpose_raw_and_probability.jpg /home/qinyu/images/cp/cellpose_raw.jpg"
DEFAULT_MODEL_ID="philosophical-panda"
DEFAULT_MODEL_ICON="🐼"
DEFAULT_MODEL_VERSION="0.1.0"
DEFAULT_MODEL_NAME="My Cool Cellpose"
DEFAULT_MODEL_DOCUMENTATION="A cool Cellpose model trained for my cool dataset."
DEFAULT_MODEL_AUTHORS='[{"name": "Qin Yu", "affiliation": "EMBL", "github_user": "qin-yu", "orcid": "0000-0002-4652-0795"}]'
DEFAULT_MODEL_CITE='[{"text": "For more details of the model itself, see the manuscript", "doi": "10.1242/dev.202800", "url": null}]'
DEFAULT_MODEL_TAGS="cellpose 3d 2d"
DEFAULT_MODEL_LICENSE="MIT"
DEFAULT_MODEL_REPO="https://github.com/kreshuklab/go-nuclear"
# Run the Python script with default parameters
python export.py \
--channels $DEFAULT_CHANNELS \
--path_pretrained_model "$DEFAULT_PATH_PRETRAINED_MODEL" \
--path_readme "$DEFAULT_PATH_README" \
--list_path_cover_images $DEFAULT_LIST_PATH_COVER_IMAGES \
--model_version "$DEFAULT_MODEL_VERSION" \
--model_name "$DEFAULT_MODEL_NAME" \
--model_documentation "$DEFAULT_MODEL_DOCUMENTATION" \
--model_authors "$DEFAULT_MODEL_AUTHORS" \
--model_cite "$DEFAULT_MODEL_CITE" \
--model_tags $DEFAULT_MODEL_TAGS \
--model_license "$DEFAULT_MODEL_LICENSE" \
--model_repo "$DEFAULT_MODEL_REPO"
```
"""
import os
import sys
import json
import argparse
from pathlib import Path
from urllib.parse import urlparse
import torch
import numpy as np
from cellpose.io import imread
from cellpose.utils import download_url_to_file
from cellpose.transforms import pad_image_ND, normalize_img, convert_image
from cellpose.resnet_torch import CPnetBioImageIO
from bioimageio.spec.model.v0_5 import (
ArchitectureFromFileDescr,
Author,
AxisId,
ChannelAxis,
CiteEntry,
Doi,
FileDescr,
Identifier,
InputTensorDescr,
IntervalOrRatioDataDescr,
LicenseId,
ModelDescr,
ModelId,
OrcidId,
OutputTensorDescr,
ParameterizedSize,
PytorchStateDictWeightsDescr,
SizeReference,
SpaceInputAxis,
SpaceOutputAxis,
TensorId,
TorchscriptWeightsDescr,
Version,
WeightsDescr,
)
# Define ARBITRARY_SIZE if it is not available in the module
try:
from bioimageio.spec.model.v0_5 import ARBITRARY_SIZE
except ImportError:
ARBITRARY_SIZE = ParameterizedSize(min=1, step=1)
from bioimageio.spec.common import HttpUrl
from bioimageio.spec import save_bioimageio_package
from bioimageio.core import test_model
DEFAULT_CHANNELS = [2, 1]
DEFAULT_NORMALIZE_PARAMS = {
"axis": -1,
"lowhigh": None,
"percentile": None,
"normalize": True,
"norm3D": False,
"sharpen_radius": 0,
"smooth_radius": 0,
"tile_norm_blocksize": 0,
"tile_norm_smooth3D": 1,
"invert": False,
}
IMAGE_URL = "http://www.cellpose.org/static/data/rgb_3D.tif"
def download_and_normalize_image(path_dir_temp, channels=DEFAULT_CHANNELS):
"""
Download and normalize image.
"""
filename = os.path.basename(urlparse(IMAGE_URL).path)
path_image = path_dir_temp / filename
if not path_image.exists():
sys.stderr.write(f'Downloading: "{IMAGE_URL}" to {path_image}\n')
download_url_to_file(IMAGE_URL, path_image)
img = imread(path_image).astype(np.float32)
img = convert_image(img, channels, channel_axis=1, z_axis=0, do_3D=False, nchan=2)
img = normalize_img(img, **DEFAULT_NORMALIZE_PARAMS)
img = np.transpose(img, (0, 3, 1, 2))
img, _, _ = pad_image_ND(img)
return img
def load_bioimageio_cpnet_model(path_model_weight, nchan=2):
cpnet_kwargs = {
"nbase": [nchan, 32, 64, 128, 256],
"nout": 3,
"sz": 3,
"mkldnn": False,
"conv_3D": False,
"max_pool": True,
}
cpnet_biio = CPnetBioImageIO(**cpnet_kwargs)
state_dict_cuda = torch.load(path_model_weight, map_location=torch.device("cpu"), weights_only=True)
cpnet_biio.load_state_dict(state_dict_cuda)
cpnet_biio.eval() # crucial for the prediction results
return cpnet_biio, cpnet_kwargs
def descr_gen_input(path_test_input, nchan=2):
input_axes = [
SpaceInputAxis(id=AxisId("z"), size=ARBITRARY_SIZE),
ChannelAxis(channel_names=[Identifier(f"c{i+1}") for i in range(nchan)]),
SpaceInputAxis(id=AxisId("y"), size=ParameterizedSize(min=16, step=16)),
SpaceInputAxis(id=AxisId("x"), size=ParameterizedSize(min=16, step=16)),
]
data_descr = IntervalOrRatioDataDescr(type="float32")
path_test_input = Path(path_test_input)
descr_input = InputTensorDescr(
id=TensorId("raw"),
axes=input_axes,
test_tensor=FileDescr(source=path_test_input),
data=data_descr,
)
return descr_input
def descr_gen_output_flow(path_test_output):
output_axes_output_tensor = [
SpaceOutputAxis(id=AxisId("z"), size=SizeReference(tensor_id=TensorId("raw"), axis_id=AxisId("z"))),
ChannelAxis(channel_names=[Identifier("flow1"), Identifier("flow2"), Identifier("flow3")]),
SpaceOutputAxis(id=AxisId("y"), size=SizeReference(tensor_id=TensorId("raw"), axis_id=AxisId("y"))),
SpaceOutputAxis(id=AxisId("x"), size=SizeReference(tensor_id=TensorId("raw"), axis_id=AxisId("x"))),
]
path_test_output = Path(path_test_output)
descr_output = OutputTensorDescr(
id=TensorId("flow"),
axes=output_axes_output_tensor,
test_tensor=FileDescr(source=path_test_output),
)
return descr_output
def descr_gen_output_downsampled(path_dir_temp, nbase=None):
if nbase is None:
nbase = [32, 64, 128, 256]
output_axes_downsampled_tensors = [
[
SpaceOutputAxis(id=AxisId("z"), size=SizeReference(tensor_id=TensorId("raw"), axis_id=AxisId("z"))),
ChannelAxis(channel_names=[Identifier(f"feature{i+1}") for i in range(base)]),
SpaceOutputAxis(
id=AxisId("y"),
size=SizeReference(tensor_id=TensorId("raw"), axis_id=AxisId("y")),
scale=2**offset,
),
SpaceOutputAxis(
id=AxisId("x"),
size=SizeReference(tensor_id=TensorId("raw"), axis_id=AxisId("x")),
scale=2**offset,
),
]
for offset, base in enumerate(nbase)
]
path_downsampled_tensors = [
Path(path_dir_temp / f"test_downsampled_{i}.npy") for i in range(len(output_axes_downsampled_tensors))
]
descr_output_downsampled_tensors = [
OutputTensorDescr(
id=TensorId(f"downsampled_{i}"),
axes=axes,
test_tensor=FileDescr(source=path),
)
for i, (axes, path) in enumerate(zip(output_axes_downsampled_tensors, path_downsampled_tensors))
]
return descr_output_downsampled_tensors
def descr_gen_output_style(path_test_style, nchannel=256):
output_axes_style_tensor = [
SpaceOutputAxis(id=AxisId("z"), size=SizeReference(tensor_id=TensorId("raw"), axis_id=AxisId("z"))),
ChannelAxis(channel_names=[Identifier(f"feature{i+1}") for i in range(nchannel)]),
]
path_style_tensor = Path(path_test_style)
descr_output_style_tensor = OutputTensorDescr(
id=TensorId("style"),
axes=output_axes_style_tensor,
test_tensor=FileDescr(source=path_style_tensor),
)
return descr_output_style_tensor
def descr_gen_arch(cpnet_kwargs, path_cpnet_wrapper=None):
if path_cpnet_wrapper is None:
path_cpnet_wrapper = Path(__file__).parent / "resnet_torch.py"
pytorch_architecture = ArchitectureFromFileDescr(
callable=Identifier("CPnetBioImageIO"),
source=Path(path_cpnet_wrapper),
kwargs=cpnet_kwargs,
)
return pytorch_architecture
def descr_gen_documentation(path_doc, markdown_text):
with open(path_doc, "w") as f:
f.write(markdown_text)
def package_to_bioimageio(
path_pretrained_model,
path_save_trace,
path_readme,
list_path_cover_images,
descr_input,
descr_output,
descr_output_downsampled_tensors,
descr_output_style_tensor,
pytorch_version,
pytorch_architecture,
model_id,
model_icon,
model_version,
model_name,
model_documentation,
model_authors,
model_cite,
model_tags,
model_license,
model_repo,
):
"""Package model description to BioImage.IO format."""
my_model_descr = ModelDescr(
id=ModelId(model_id) if model_id is not None else None,
id_emoji=model_icon,
version=Version(model_version),
name=model_name,
description=model_documentation,
authors=[
Author(
name=author["name"],
affiliation=author["affiliation"],
github_user=author["github_user"],
orcid=OrcidId(author["orcid"]),
)
for author in model_authors
],
cite=[CiteEntry(text=cite["text"], doi=Doi(cite["doi"]), url=cite["url"]) for cite in model_cite],
covers=[Path(img) for img in list_path_cover_images],
license=LicenseId(model_license),
tags=model_tags,
documentation=Path(path_readme),
git_repo=HttpUrl(model_repo),
inputs=[descr_input],
outputs=[descr_output, descr_output_style_tensor] + descr_output_downsampled_tensors,
weights=WeightsDescr(
pytorch_state_dict=PytorchStateDictWeightsDescr(
source=Path(path_pretrained_model),
architecture=pytorch_architecture,
pytorch_version=pytorch_version,
),
torchscript=TorchscriptWeightsDescr(
source=Path(path_save_trace),
pytorch_version=pytorch_version,
parent="pytorch_state_dict", # these weights were converted from the pytorch_state_dict weights.
),
),
)
return my_model_descr
def parse_args():
# fmt: off
parser = argparse.ArgumentParser(description="BioImage.IO model packaging for Cellpose")
parser.add_argument("--channels", nargs=2, default=[2, 1], type=int, help="Cyto-only = [2, 0], Cyto + Nuclei = [2, 1], Nuclei-only = [1, 0]")
parser.add_argument("--path_pretrained_model", required=True, type=str, help="Path to pretrained model file, e.g., cellpose_residual_on_style_on_concatenation_off_1135_rest_2023_05_04_23_41_31.252995")
parser.add_argument("--path_readme", required=True, type=str, help="Path to README file")
parser.add_argument("--list_path_cover_images", nargs='+', required=True, type=str, help="List of paths to cover images")
parser.add_argument("--model_id", type=str, help="Model ID, provide if already exists", default=None)
parser.add_argument("--model_icon", type=str, help="Model icon, provide if already exists", default=None)
parser.add_argument("--model_version", required=True, type=str, help="Model version, new model should be 0.1.0")
parser.add_argument("--model_name", required=True, type=str, help="Model name, e.g., My Cool Cellpose")
parser.add_argument("--model_documentation", required=True, type=str, help="Model documentation, e.g., A cool Cellpose model trained for my cool dataset.")
parser.add_argument("--model_authors", required=True, type=str, help="Model authors in JSON format, e.g., '[{\"name\": \"Qin Yu\", \"affiliation\": \"EMBL\", \"github_user\": \"qin-yu\", \"orcid\": \"0000-0002-4652-0795\"}]'")
parser.add_argument("--model_cite", required=True, type=str, help="Model citation in JSON format, e.g., '[{\"text\": \"For more details of the model itself, see the manuscript\", \"doi\": \"10.1242/dev.202800\", \"url\": null}]'")
parser.add_argument("--model_tags", nargs='+', required=True, type=str, help="Model tags, e.g., cellpose 3d 2d")
parser.add_argument("--model_license", required=True, type=str, help="Model license, e.g., MIT")
parser.add_argument("--model_repo", required=True, type=str, help="Model repository URL")
return parser.parse_args()
# fmt: on
def main():
args = parse_args()
# Parse user-provided paths and arguments
channels = args.channels
model_cite = json.loads(args.model_cite)
model_authors = json.loads(args.model_authors)
path_readme = Path(args.path_readme)
path_pretrained_model = Path(args.path_pretrained_model)
list_path_cover_images = [Path(path_image) for path_image in args.list_path_cover_images]
# Auto-generated paths
path_cpnet_wrapper = Path(__file__).resolve().parent / "resnet_torch.py"
path_dir_temp = Path(__file__).resolve().parent.parent / "models" / path_pretrained_model.stem
path_dir_temp.mkdir(parents=True, exist_ok=True)
path_save_trace = path_dir_temp / "cp_traced.pt"
path_test_input = path_dir_temp / "test_input.npy"
path_test_output = path_dir_temp / "test_output.npy"
path_test_style = path_dir_temp / "test_style.npy"
path_bioimageio_package = path_dir_temp / "cellpose_model.zip"
# Download test input image
img_np = download_and_normalize_image(path_dir_temp, channels=channels)
np.save(path_test_input, img_np)
img = torch.tensor(img_np).float()
# Load model
cpnet_biio, cpnet_kwargs = load_bioimageio_cpnet_model(path_pretrained_model)
# Test model and save output
tuple_output_tensor = cpnet_biio(img)
np.save(path_test_output, tuple_output_tensor[0].detach().numpy())
np.save(path_test_style, tuple_output_tensor[1].detach().numpy())
for i, t in enumerate(tuple_output_tensor[2:]):
np.save(path_dir_temp / f"test_downsampled_{i}.npy", t.detach().numpy())
# Save traced model
model_traced = torch.jit.trace(cpnet_biio, img)
model_traced.save(path_save_trace)
# Generate model description
descr_input = descr_gen_input(path_test_input)
descr_output = descr_gen_output_flow(path_test_output)
descr_output_downsampled_tensors = descr_gen_output_downsampled(path_dir_temp, nbase=cpnet_biio.nbase[1:])
descr_output_style_tensor = descr_gen_output_style(path_test_style, cpnet_biio.nbase[-1])
pytorch_version = Version(torch.__version__)
pytorch_architecture = descr_gen_arch(cpnet_kwargs, path_cpnet_wrapper)
# Package model
my_model_descr = package_to_bioimageio(
path_pretrained_model,
path_save_trace,
path_readme,
list_path_cover_images,
descr_input,
descr_output,
descr_output_downsampled_tensors,
descr_output_style_tensor,
pytorch_version,
pytorch_architecture,
args.model_id,
args.model_icon,
args.model_version,
args.model_name,
args.model_documentation,
model_authors,
model_cite,
args.model_tags,
args.model_license,
args.model_repo,
)
# Test model
summary = test_model(my_model_descr, weight_format="pytorch_state_dict")
summary.display()
summary = test_model(my_model_descr, weight_format="torchscript")
summary.display()
# Save BioImage.IO package
package_path = save_bioimageio_package(my_model_descr, output_path=Path(path_bioimageio_package))
print("package path:", package_path)
if __name__ == "__main__":
main()
|