Spaces:
Sleeping
Sleeping
File size: 9,262 Bytes
9060565 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
"""
Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu.
"""
import os
import numpy as np
import cv2
from scipy.ndimage import gaussian_filter
from . import utils, io, transforms
try:
import matplotlib
MATPLOTLIB_ENABLED = True
except:
MATPLOTLIB_ENABLED = False
try:
from skimage import color
from skimage.segmentation import find_boundaries
SKIMAGE_ENABLED = True
except:
SKIMAGE_ENABLED = False
# modified to use sinebow color
def dx_to_circ(dP):
"""Converts the optic flow representation to a circular color representation.
Args:
dP (ndarray): Flow field components [dy, dx].
Returns:
ndarray: The circular color representation of the optic flow.
"""
mag = 255 * np.clip(transforms.normalize99(np.sqrt(np.sum(dP**2, axis=0))), 0, 1.)
angles = np.arctan2(dP[1], dP[0]) + np.pi
a = 2
mag /= a
rgb = np.zeros((*dP.shape[1:], 3), "uint8")
rgb[..., 0] = np.clip(mag * (np.cos(angles) + 1), 0, 255).astype("uint8")
rgb[..., 1] = np.clip(mag * (np.cos(angles + 2 * np.pi / 3) + 1), 0, 255).astype("uint8")
rgb[..., 2] = np.clip(mag * (np.cos(angles + 4 * np.pi / 3) + 1), 0, 255).astype("uint8")
return rgb
def show_segmentation(fig, img, maski, flowi, channels=[0, 0], file_name=None):
"""Plot segmentation results (like on website).
Can save each panel of figure with file_name option. Use channels option if
img input is not an RGB image with 3 channels.
Args:
fig (matplotlib.pyplot.figure): Figure in which to make plot.
img (ndarray): 2D or 3D array. Image input into cellpose.
maski (int, ndarray): For image k, masks[k] output from Cellpose.eval, where 0=NO masks; 1,2,...=mask labels.
flowi (int, ndarray): For image k, flows[k][0] output from Cellpose.eval (RGB of flows).
channels (list of int, optional): Channels used to run Cellpose, no need to use if image is RGB. Defaults to [0, 0].
file_name (str, optional): File name of image. If file_name is not None, figure panels are saved. Defaults to None.
seg_norm (bool, optional): Improve cell visibility under labels. Defaults to False.
"""
if not MATPLOTLIB_ENABLED:
raise ImportError(
"matplotlib not installed, install with 'pip install matplotlib'")
ax = fig.add_subplot(1, 4, 1)
img0 = img.copy()
if img0.shape[0] < 4:
img0 = np.transpose(img0, (1, 2, 0))
if img0.shape[-1] < 3 or img0.ndim < 3:
img0 = image_to_rgb(img0, channels=channels)
else:
if img0.max() <= 50.0:
img0 = np.uint8(np.clip(img0, 0, 1) * 255)
ax.imshow(img0)
ax.set_title("original image")
ax.axis("off")
outlines = utils.masks_to_outlines(maski)
overlay = mask_overlay(img0, maski)
ax = fig.add_subplot(1, 4, 2)
outX, outY = np.nonzero(outlines)
imgout = img0.copy()
imgout[outX, outY] = np.array([255, 0, 0]) # pure red
ax.imshow(imgout)
ax.set_title("predicted outlines")
ax.axis("off")
ax = fig.add_subplot(1, 4, 3)
ax.imshow(overlay)
ax.set_title("predicted masks")
ax.axis("off")
ax = fig.add_subplot(1, 4, 4)
ax.imshow(flowi)
ax.set_title("predicted cell pose")
ax.axis("off")
if file_name is not None:
save_path = os.path.splitext(file_name)[0]
io.imsave(save_path + "_overlay.jpg", overlay)
io.imsave(save_path + "_outlines.jpg", imgout)
io.imsave(save_path + "_flows.jpg", flowi)
def mask_rgb(masks, colors=None):
"""Masks in random RGB colors.
Args:
masks (int, 2D array): Masks where 0=NO masks; 1,2,...=mask labels.
colors (int, 2D array, optional): Size [nmasks x 3], each entry is a color in 0-255 range.
Returns:
RGB (uint8, 3D array): Array of masks overlaid on grayscale image.
"""
if colors is not None:
if colors.max() > 1:
colors = np.float32(colors)
colors /= 255
colors = utils.rgb_to_hsv(colors)
HSV = np.zeros((masks.shape[0], masks.shape[1], 3), np.float32)
HSV[:, :, 2] = 1.0
for n in range(int(masks.max())):
ipix = (masks == n + 1).nonzero()
if colors is None:
HSV[ipix[0], ipix[1], 0] = np.random.rand()
else:
HSV[ipix[0], ipix[1], 0] = colors[n, 0]
HSV[ipix[0], ipix[1], 1] = np.random.rand() * 0.5 + 0.5
HSV[ipix[0], ipix[1], 2] = np.random.rand() * 0.5 + 0.5
RGB = (utils.hsv_to_rgb(HSV) * 255).astype(np.uint8)
return RGB
def mask_overlay(img, masks, colors=None):
"""Overlay masks on image (set image to grayscale).
Args:
img (int or float, 2D or 3D array): Image of size [Ly x Lx (x nchan)].
masks (int, 2D array): Masks where 0=NO masks; 1,2,...=mask labels.
colors (int, 2D array, optional): Size [nmasks x 3], each entry is a color in 0-255 range.
Returns:
RGB (uint8, 3D array): Array of masks overlaid on grayscale image.
"""
if colors is not None:
if colors.max() > 1:
colors = np.float32(colors)
colors /= 255
colors = utils.rgb_to_hsv(colors)
if img.ndim > 2:
img = img.astype(np.float32).mean(axis=-1)
else:
img = img.astype(np.float32)
HSV = np.zeros((img.shape[0], img.shape[1], 3), np.float32)
HSV[:, :, 2] = np.clip((img / 255. if img.max() > 1 else img) * 1.5, 0, 1)
hues = np.linspace(0, 1, masks.max() + 1)[np.random.permutation(masks.max())]
for n in range(int(masks.max())):
ipix = (masks == n + 1).nonzero()
if colors is None:
HSV[ipix[0], ipix[1], 0] = hues[n]
else:
HSV[ipix[0], ipix[1], 0] = colors[n, 0]
HSV[ipix[0], ipix[1], 1] = 1.0
RGB = (utils.hsv_to_rgb(HSV) * 255).astype(np.uint8)
return RGB
def image_to_rgb(img0, channels=[0, 0]):
"""Converts image from 2 x Ly x Lx or Ly x Lx x 2 to RGB Ly x Lx x 3.
Args:
img0 (ndarray): Input image of shape 2 x Ly x Lx or Ly x Lx x 2.
Returns:
ndarray: RGB image of shape Ly x Lx x 3.
"""
img = img0.copy()
img = img.astype(np.float32)
if img.ndim < 3:
img = img[:, :, np.newaxis]
if img.shape[0] < 5:
img = np.transpose(img, (1, 2, 0))
if channels[0] == 0:
img = img.mean(axis=-1)[:, :, np.newaxis]
for i in range(img.shape[-1]):
if np.ptp(img[:, :, i]) > 0:
img[:, :, i] = np.clip(transforms.normalize99(img[:, :, i]), 0, 1)
img[:, :, i] = np.clip(img[:, :, i], 0, 1)
img *= 255
img = np.uint8(img)
RGB = np.zeros((img.shape[0], img.shape[1], 3), np.uint8)
if img.shape[-1] == 1:
RGB = np.tile(img, (1, 1, 3))
else:
RGB[:, :, channels[0] - 1] = img[:, :, 0]
if channels[1] > 0:
RGB[:, :, channels[1] - 1] = img[:, :, 1]
return RGB
def interesting_patch(mask, bsize=130):
"""
Get patch of size bsize x bsize with most masks.
Args:
mask (ndarray): Input mask.
bsize (int): Size of the patch.
Returns:
tuple: Patch coordinates (y, x).
"""
Ly, Lx = mask.shape
m = np.float32(mask > 0)
m = gaussian_filter(m, bsize / 2)
y, x = np.unravel_index(np.argmax(m), m.shape)
ycent = max(bsize // 2, min(y, Ly - bsize // 2))
xcent = max(bsize // 2, min(x, Lx - bsize // 2))
patch = [
np.arange(ycent - bsize // 2, ycent + bsize // 2, 1, int),
np.arange(xcent - bsize // 2, xcent + bsize // 2, 1, int)
]
return patch
def disk(med, r, Ly, Lx):
"""Returns the pixels of a disk with a given radius and center.
Args:
med (tuple): The center coordinates of the disk.
r (float): The radius of the disk.
Ly (int): The height of the image.
Lx (int): The width of the image.
Returns:
tuple: A tuple containing the y and x coordinates of the pixels within the disk.
"""
yy, xx = np.meshgrid(np.arange(0, Ly, 1, int), np.arange(0, Lx, 1, int),
indexing="ij")
inds = ((yy - med[0])**2 + (xx - med[1])**2)**0.5 <= r
y = yy[inds].flatten()
x = xx[inds].flatten()
return y, x
def outline_view(img0, maski, color=[1, 0, 0], mode="inner"):
"""
Generates a red outline overlay onto the image.
Args:
img0 (numpy.ndarray): The input image.
maski (numpy.ndarray): The mask representing the region of interest.
color (list, optional): The color of the outline overlay. Defaults to [1, 0, 0] (red).
mode (str, optional): The mode for generating the outline. Defaults to "inner".
Returns:
numpy.ndarray: The image with the red outline overlay.
"""
if img0.ndim == 2:
img0 = np.stack([img0] * 3, axis=-1)
elif img0.ndim != 3:
raise ValueError("img0 not right size (must have ndim 2 or 3)")
if SKIMAGE_ENABLED:
outlines = find_boundaries(maski, mode=mode)
else:
outlines = utils.masks_to_outlines(maski, mode=mode)
outY, outX = np.nonzero(outlines)
imgout = img0.copy()
imgout[outY, outX] = np.array(color)
return imgout
|