Spaces:
Sleeping
Sleeping
File size: 12,911 Bytes
9060565 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
"""
Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
def batchconv(in_channels, out_channels, sz, conv_3D=False):
conv_layer = nn.Conv3d if conv_3D else nn.Conv2d
batch_norm = nn.BatchNorm3d if conv_3D else nn.BatchNorm2d
return nn.Sequential(
batch_norm(in_channels, eps=1e-5, momentum=0.05),
nn.ReLU(inplace=True),
conv_layer(in_channels, out_channels, sz, padding=sz // 2),
)
def batchconv0(in_channels, out_channels, sz, conv_3D=False):
conv_layer = nn.Conv3d if conv_3D else nn.Conv2d
batch_norm = nn.BatchNorm3d if conv_3D else nn.BatchNorm2d
return nn.Sequential(
batch_norm(in_channels, eps=1e-5, momentum=0.05),
conv_layer(in_channels, out_channels, sz, padding=sz // 2),
)
class resdown(nn.Module):
def __init__(self, in_channels, out_channels, sz, conv_3D=False):
super().__init__()
self.conv = nn.Sequential()
self.proj = batchconv0(in_channels, out_channels, 1, conv_3D)
for t in range(4):
if t == 0:
self.conv.add_module("conv_%d" % t,
batchconv(in_channels, out_channels, sz, conv_3D))
else:
self.conv.add_module("conv_%d" % t,
batchconv(out_channels, out_channels, sz, conv_3D))
def forward(self, x):
x = self.proj(x) + self.conv[1](self.conv[0](x))
x = x + self.conv[3](self.conv[2](x))
return x
class downsample(nn.Module):
def __init__(self, nbase, sz, conv_3D=False, max_pool=True):
super().__init__()
self.down = nn.Sequential()
if max_pool:
self.maxpool = nn.MaxPool3d(2, stride=2) if conv_3D else nn.MaxPool2d(
2, stride=2)
else:
self.maxpool = nn.AvgPool3d(2, stride=2) if conv_3D else nn.AvgPool2d(
2, stride=2)
for n in range(len(nbase) - 1):
self.down.add_module("res_down_%d" % n,
resdown(nbase[n], nbase[n + 1], sz, conv_3D))
def forward(self, x):
xd = []
for n in range(len(self.down)):
if n > 0:
y = self.maxpool(xd[n - 1])
else:
y = x
xd.append(self.down[n](y))
return xd
class batchconvstyle(nn.Module):
def __init__(self, in_channels, out_channels, style_channels, sz, conv_3D=False):
super().__init__()
self.concatenation = False
self.conv = batchconv(in_channels, out_channels, sz, conv_3D)
self.full = nn.Linear(style_channels, out_channels)
def forward(self, style, x, mkldnn=False, y=None):
if y is not None:
x = x + y
feat = self.full(style)
for k in range(len(x.shape[2:])):
feat = feat.unsqueeze(-1)
if mkldnn:
x = x.to_dense()
y = (x + feat).to_mkldnn()
else:
y = x + feat
y = self.conv(y)
return y
class resup(nn.Module):
def __init__(self, in_channels, out_channels, style_channels, sz, conv_3D=False):
super().__init__()
self.concatenation = False
self.conv = nn.Sequential()
self.conv.add_module("conv_0",
batchconv(in_channels, out_channels, sz, conv_3D=conv_3D))
self.conv.add_module(
"conv_1",
batchconvstyle(out_channels, out_channels, style_channels, sz,
conv_3D=conv_3D))
self.conv.add_module(
"conv_2",
batchconvstyle(out_channels, out_channels, style_channels, sz,
conv_3D=conv_3D))
self.conv.add_module(
"conv_3",
batchconvstyle(out_channels, out_channels, style_channels, sz,
conv_3D=conv_3D))
self.proj = batchconv0(in_channels, out_channels, 1, conv_3D=conv_3D)
def forward(self, x, y, style, mkldnn=False):
x = self.proj(x) + self.conv[1](style, self.conv[0](x), y=y, mkldnn=mkldnn)
x = x + self.conv[3](style, self.conv[2](style, x, mkldnn=mkldnn),
mkldnn=mkldnn)
return x
class make_style(nn.Module):
def __init__(self, conv_3D=False):
super().__init__()
self.flatten = nn.Flatten()
self.avg_pool = F.avg_pool3d if conv_3D else F.avg_pool2d
def forward(self, x0):
style = self.avg_pool(x0, kernel_size=x0.shape[2:])
style = self.flatten(style)
style = style / torch.sum(style**2, axis=1, keepdim=True)**.5
return style
class upsample(nn.Module):
def __init__(self, nbase, sz, conv_3D=False):
super().__init__()
self.upsampling = nn.Upsample(scale_factor=2, mode="nearest")
self.up = nn.Sequential()
for n in range(1, len(nbase)):
self.up.add_module("res_up_%d" % (n - 1),
resup(nbase[n], nbase[n - 1], nbase[-1], sz, conv_3D))
def forward(self, style, xd, mkldnn=False):
x = self.up[-1](xd[-1], xd[-1], style, mkldnn=mkldnn)
for n in range(len(self.up) - 2, -1, -1):
if mkldnn:
x = self.upsampling(x.to_dense()).to_mkldnn()
else:
x = self.upsampling(x)
x = self.up[n](x, xd[n], style, mkldnn=mkldnn)
return x
class CPnet(nn.Module):
"""
CPnet is the Cellpose neural network model used for cell segmentation and image restoration.
Args:
nbase (list): List of integers representing the number of channels in each layer of the downsample path.
nout (int): Number of output channels.
sz (int): Size of the input image.
mkldnn (bool, optional): Whether to use MKL-DNN acceleration. Defaults to False.
conv_3D (bool, optional): Whether to use 3D convolution. Defaults to False.
max_pool (bool, optional): Whether to use max pooling. Defaults to True.
diam_mean (float, optional): Mean diameter of the cells. Defaults to 30.0.
Attributes:
nbase (list): List of integers representing the number of channels in each layer of the downsample path.
nout (int): Number of output channels.
sz (int): Size of the input image.
residual_on (bool): Whether to use residual connections.
style_on (bool): Whether to use style transfer.
concatenation (bool): Whether to use concatenation.
conv_3D (bool): Whether to use 3D convolution.
mkldnn (bool): Whether to use MKL-DNN acceleration.
downsample (nn.Module): Downsample blocks of the network.
upsample (nn.Module): Upsample blocks of the network.
make_style (nn.Module): Style module, avgpool's over all spatial positions.
output (nn.Module): Output module - batchconv layer.
diam_mean (nn.Parameter): Parameter representing the mean diameter to which the cells are rescaled to during training.
diam_labels (nn.Parameter): Parameter representing the mean diameter of the cells in the training set (before rescaling).
"""
def __init__(self, nbase, nout, sz, mkldnn=False, conv_3D=False, max_pool=True,
diam_mean=30.):
super().__init__()
self.nchan = nbase[0]
self.nbase = nbase
self.nout = nout
self.sz = sz
self.residual_on = True
self.style_on = True
self.concatenation = False
self.conv_3D = conv_3D
self.mkldnn = mkldnn if mkldnn is not None else False
self.downsample = downsample(nbase, sz, conv_3D=conv_3D, max_pool=max_pool)
nbaseup = nbase[1:]
nbaseup.append(nbaseup[-1])
self.upsample = upsample(nbaseup, sz, conv_3D=conv_3D)
self.make_style = make_style(conv_3D=conv_3D)
self.output = batchconv(nbaseup[0], nout, 1, conv_3D=conv_3D)
self.diam_mean = nn.Parameter(data=torch.ones(1) * diam_mean,
requires_grad=False)
self.diam_labels = nn.Parameter(data=torch.ones(1) * diam_mean,
requires_grad=False)
@property
def device(self):
"""
Get the device of the model.
Returns:
torch.device: The device of the model.
"""
return next(self.parameters()).device
def forward(self, data):
"""
Forward pass of the CPnet model.
Args:
data (torch.Tensor): Input data.
Returns:
tuple: A tuple containing the output tensor, style tensor, and downsampled tensors.
"""
if self.mkldnn:
data = data.to_mkldnn()
T0 = self.downsample(data)
if self.mkldnn:
style = self.make_style(T0[-1].to_dense())
else:
style = self.make_style(T0[-1])
style0 = style
if not self.style_on:
style = style * 0
T1 = self.upsample(style, T0, self.mkldnn)
T1 = self.output(T1)
if self.mkldnn:
T0 = [t0.to_dense() for t0 in T0]
T1 = T1.to_dense()
return T1, style0, T0
def save_model(self, filename):
"""
Save the model to a file.
Args:
filename (str): The path to the file where the model will be saved.
"""
torch.save(self.state_dict(), filename)
def load_model(self, filename, device=None):
"""
Load the model from a file.
Args:
filename (str): The path to the file where the model is saved.
device (torch.device, optional): The device to load the model on. Defaults to None.
"""
if (device is not None) and (device.type != "cpu"):
state_dict = torch.load(filename, map_location=device, weights_only=True)
else:
self.__init__(self.nbase, self.nout, self.sz, self.mkldnn, self.conv_3D,
self.diam_mean)
state_dict = torch.load(filename, map_location=torch.device("cpu"),
weights_only=True)
if state_dict["output.2.weight"].shape[0] != self.nout:
for name in self.state_dict():
if "output" not in name:
self.state_dict()[name].copy_(state_dict[name])
else:
self.load_state_dict(
dict([(name, param) for name, param in state_dict.items()]),
strict=False)
class CPnetBioImageIO(CPnet):
"""
A subclass of the CPnet model compatible with the BioImage.IO Spec.
This subclass addresses the limitation of CPnet's incompatibility with the BioImage.IO Spec,
allowing the CPnet model to use the weights uploaded to the BioImage.IO Model Zoo.
"""
def forward(self, x):
"""
Perform a forward pass of the CPnet model and return unpacked tensors.
Args:
x (torch.Tensor): Input tensor.
Returns:
tuple: A tuple containing the output tensor, style tensor, and downsampled tensors.
"""
output_tensor, style_tensor, downsampled_tensors = super().forward(x)
return output_tensor, style_tensor, *downsampled_tensors
def load_model(self, filename, device=None):
"""
Load the model from a file.
Args:
filename (str): The path to the file where the model is saved.
device (torch.device, optional): The device to load the model on. Defaults to None.
"""
if (device is not None) and (device.type != "cpu"):
state_dict = torch.load(filename, map_location=device, weights_only=True)
else:
self.__init__(self.nbase, self.nout, self.sz, self.mkldnn, self.conv_3D,
self.diam_mean)
state_dict = torch.load(filename, map_location=torch.device("cpu"),
weights_only=True)
self.load_state_dict(state_dict)
def load_state_dict(self, state_dict):
"""
Load the state dictionary into the model.
This method overrides the default `load_state_dict` to handle Cellpose's custom
loading mechanism and ensures compatibility with BioImage.IO Core.
Args:
state_dict (Mapping[str, Any]): A state dictionary to load into the model
"""
if state_dict["output.2.weight"].shape[0] != self.nout:
for name in self.state_dict():
if "output" not in name:
self.state_dict()[name].copy_(state_dict[name])
else:
super().load_state_dict(
{name: param for name, param in state_dict.items()},
strict=False)
|