Spaces:
Sleeping
Sleeping
File size: 35,113 Bytes
9060565 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 |
import time
import os
import numpy as np
from cellpose import io, transforms, utils, models, dynamics, metrics, resnet_torch
from cellpose.transforms import normalize_img
from pathlib import Path
import torch
from torch import nn
from tqdm import trange
from numba import prange
import logging
train_logger = logging.getLogger(__name__)
def _loss_fn_seg(lbl, y, device):
"""
Calculates the loss function between true labels lbl and prediction y.
Args:
lbl (numpy.ndarray): True labels (cellprob, flowsY, flowsX).
y (torch.Tensor): Predicted values (flowsY, flowsX, cellprob).
device (torch.device): Device on which the tensors are located.
Returns:
torch.Tensor: Loss value.
"""
criterion = nn.MSELoss(reduction="mean")
criterion2 = nn.BCEWithLogitsLoss(reduction="mean")
veci = 5. * torch.from_numpy(lbl[:, 1:]).to(device)
loss = criterion(y[:, :2], veci)
loss /= 2.
loss2 = criterion2(y[:, -1], torch.from_numpy(lbl[:, 0] > 0.5).to(device).float())
loss = loss + loss2
return loss
def _get_batch(inds, data=None, labels=None, files=None, labels_files=None,
channels=None, channel_axis=None, rgb=False,
normalize_params={"normalize": False}):
"""
Get a batch of images and labels.
Args:
inds (list): List of indices indicating which images and labels to retrieve.
data (list or None): List of image data. If None, images will be loaded from files.
labels (list or None): List of label data. If None, labels will be loaded from files.
files (list or None): List of file paths for images.
labels_files (list or None): List of file paths for labels.
channels (list or None): List of channel indices to extract from images.
channel_axis (int or None): Axis along which the channels are located.
normalize_params (dict): Dictionary of parameters for image normalization (will be faster, if loading from files to pre-normalize).
Returns:
tuple: A tuple containing two lists: the batch of images and the batch of labels.
"""
if data is None:
lbls = None
imgs = [io.imread(files[i]) for i in inds]
imgs = _reshape_norm(imgs, channels=channels, channel_axis=channel_axis,
rgb=rgb, normalize_params=normalize_params)
if labels_files is not None:
lbls = [io.imread(labels_files[i])[1:] for i in inds]
else:
imgs = [data[i] for i in inds]
lbls = [labels[i][1:] for i in inds]
return imgs, lbls
def pad_to_rgb(img):
if img.ndim == 2 or np.ptp(img[1]) < 1e-3:
if img.ndim == 2:
img = img[np.newaxis, :, :]
img = np.tile(img[:1], (3, 1, 1))
elif img.shape[0] < 3:
nc, Ly, Lx = img.shape
# randomly flip channels
if np.random.rand() > 0.5:
img = img[::-1]
# randomly insert blank channel
ic = np.random.randint(3)
img = np.insert(img, ic, np.zeros((3 - nc, Ly, Lx), dtype=img.dtype), axis=0)
return img
def convert_to_rgb(img):
if img.ndim == 2:
img = img[np.newaxis, :, :]
img = np.tile(img, (3, 1, 1))
elif img.shape[0] < 3:
img = img.mean(axis=0, keepdims=True)
img = transforms.normalize99(img)
img = np.tile(img, (3, 1, 1))
return img
def _reshape_norm(data, channels=None, channel_axis=None, rgb=False,
normalize_params={"normalize": False}):
"""
Reshapes and normalizes the input data.
Args:
data (list): List of input data.
channels (int or list, optional): Number of channels or list of channel indices to keep. Defaults to None.
channel_axis (int, optional): Axis along which the channels are located. Defaults to None.
normalize_params (dict, optional): Dictionary of normalization parameters. Defaults to {"normalize": False}.
Returns:
list: List of reshaped and normalized data.
"""
if channels is not None or channel_axis is not None:
data = [
transforms.convert_image(td, channels=channels, channel_axis=channel_axis)
for td in data
]
data = [td.transpose(2, 0, 1) for td in data]
if normalize_params["normalize"]:
data = [
transforms.normalize_img(td, normalize=normalize_params, axis=0)
for td in data
]
if rgb:
data = [pad_to_rgb(td) for td in data]
return data
def _reshape_norm_save(files, channels=None, channel_axis=None,
normalize_params={"normalize": False}):
""" not currently used -- normalization happening on each batch if not load_files """
files_new = []
for f in trange(files):
td = io.imread(f)
if channels is not None:
td = transforms.convert_image(td, channels=channels,
channel_axis=channel_axis)
td = td.transpose(2, 0, 1)
if normalize_params["normalize"]:
td = transforms.normalize_img(td, normalize=normalize_params, axis=0)
fnew = os.path.splitext(str(f))[0] + "_cpnorm.tif"
io.imsave(fnew, td)
files_new.append(fnew)
return files_new
# else:
# train_files = reshape_norm_save(train_files, channels=channels,
# channel_axis=channel_axis, normalize_params=normalize_params)
# elif test_files is not None:
# test_files = reshape_norm_save(test_files, channels=channels,
# channel_axis=channel_axis, normalize_params=normalize_params)
def _process_train_test(train_data=None, train_labels=None, train_files=None,
train_labels_files=None, train_probs=None, test_data=None,
test_labels=None, test_files=None, test_labels_files=None,
test_probs=None, load_files=True, min_train_masks=5,
compute_flows=False, channels=None, channel_axis=None,
rgb=False, normalize_params={"normalize": False
}, device=None):
"""
Process train and test data.
Args:
train_data (list or None): List of training data arrays.
train_labels (list or None): List of training label arrays.
train_files (list or None): List of training file paths.
train_labels_files (list or None): List of training label file paths.
train_probs (ndarray or None): Array of training probabilities.
test_data (list or None): List of test data arrays.
test_labels (list or None): List of test label arrays.
test_files (list or None): List of test file paths.
test_labels_files (list or None): List of test label file paths.
test_probs (ndarray or None): Array of test probabilities.
load_files (bool): Whether to load data from files.
min_train_masks (int): Minimum number of masks required for training images.
compute_flows (bool): Whether to compute flows.
channels (list or None): List of channel indices to use.
channel_axis (int or None): Axis of channel dimension.
rgb (bool): Convert training/testing images to RGB.
normalize_params (dict): Dictionary of normalization parameters.
device (torch.device): Device to use for computation.
Returns:
tuple: A tuple containing the processed train and test data and sampling probabilities and diameters.
"""
if device == None:
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('mps') if torch.backends.mps.is_available() else None
if train_data is not None and train_labels is not None:
# if data is loaded
nimg = len(train_data)
nimg_test = len(test_data) if test_data is not None else None
else:
# otherwise use files
nimg = len(train_files)
if train_labels_files is None:
train_labels_files = [
os.path.splitext(str(tf))[0] + "_flows.tif" for tf in train_files
]
train_labels_files = [tf for tf in train_labels_files if os.path.exists(tf)]
if (test_data is not None or test_files is not None) and test_labels_files is None:
test_labels_files = [
os.path.splitext(str(tf))[0] + "_flows.tif" for tf in test_files
]
test_labels_files = [tf for tf in test_labels_files if os.path.exists(tf)]
if not load_files:
train_logger.info(">>> using files instead of loading dataset")
else:
# load all images
train_logger.info(">>> loading images and labels")
train_data = [io.imread(train_files[i]) for i in trange(nimg)]
train_labels = [io.imread(train_labels_files[i]) for i in trange(nimg)]
nimg_test = len(test_files) if test_files is not None else None
if load_files and nimg_test:
test_data = [io.imread(test_files[i]) for i in trange(nimg_test)]
test_labels = [io.imread(test_labels_files[i]) for i in trange(nimg_test)]
### check that arrays are correct size
if ((train_labels is not None and nimg != len(train_labels)) or
(train_labels_files is not None and nimg != len(train_labels_files))):
error_message = "train data and labels not same length"
train_logger.critical(error_message)
raise ValueError(error_message)
if ((test_labels is not None and nimg_test != len(test_labels)) or
(test_labels_files is not None and nimg_test != len(test_labels_files))):
train_logger.warning("test data and labels not same length, not using")
test_data, test_files = None, None
if train_labels is not None:
if train_labels[0].ndim < 2 or train_data[0].ndim < 2:
error_message = "training data or labels are not at least two-dimensional"
train_logger.critical(error_message)
raise ValueError(error_message)
if train_data[0].ndim > 3:
error_message = "training data is more than three-dimensional (should be 2D or 3D array)"
train_logger.critical(error_message)
raise ValueError(error_message)
### check that flows are computed
if train_labels is not None:
train_labels = dynamics.labels_to_flows(train_labels, files=train_files,
device=device)
if test_labels is not None:
test_labels = dynamics.labels_to_flows(test_labels, files=test_files,
device=device)
elif compute_flows:
for k in trange(nimg):
tl = dynamics.labels_to_flows(io.imread(train_labels_files),
files=train_files, device=device)
if test_files is not None:
for k in trange(nimg_test):
tl = dynamics.labels_to_flows(io.imread(test_labels_files),
files=test_files, device=device)
### compute diameters
nmasks = np.zeros(nimg)
diam_train = np.zeros(nimg)
train_logger.info(">>> computing diameters")
for k in trange(nimg):
tl = (train_labels[k][0]
if train_labels is not None else io.imread(train_labels_files[k])[0])
diam_train[k], dall = utils.diameters(tl)
nmasks[k] = len(dall)
diam_train[diam_train < 5] = 5.
if test_data is not None:
diam_test = np.array(
[utils.diameters(test_labels[k][0])[0] for k in trange(len(test_labels))])
diam_test[diam_test < 5] = 5.
elif test_labels_files is not None:
diam_test = np.array([
utils.diameters(io.imread(test_labels_files[k])[0])[0]
for k in trange(len(test_labels_files))
])
diam_test[diam_test < 5] = 5.
else:
diam_test = None
### check to remove training images with too few masks
if min_train_masks > 0:
nremove = (nmasks < min_train_masks).sum()
if nremove > 0:
train_logger.warning(
f"{nremove} train images with number of masks less than min_train_masks ({min_train_masks}), removing from train set"
)
ikeep = np.nonzero(nmasks >= min_train_masks)[0]
if train_data is not None:
train_data = [train_data[i] for i in ikeep]
train_labels = [train_labels[i] for i in ikeep]
if train_files is not None:
train_files = [train_files[i] for i in ikeep]
if train_labels_files is not None:
train_labels_files = [train_labels_files[i] for i in ikeep]
if train_probs is not None:
train_probs = train_probs[ikeep]
diam_train = diam_train[ikeep]
nimg = len(train_data)
### normalize probabilities
train_probs = 1. / nimg * np.ones(nimg,
"float64") if train_probs is None else train_probs
train_probs /= train_probs.sum()
if test_files is not None or test_data is not None:
test_probs = 1. / nimg_test * np.ones(
nimg_test, "float64") if test_probs is None else test_probs
test_probs /= test_probs.sum()
### reshape and normalize train / test data
normed = False
if channels is not None or normalize_params["normalize"]:
if channels:
train_logger.info(f">>> using channels {channels}")
if normalize_params["normalize"]:
train_logger.info(f">>> normalizing {normalize_params}")
if train_data is not None:
train_data = _reshape_norm(train_data, channels=channels,
channel_axis=channel_axis, rgb=rgb,
normalize_params=normalize_params)
normed = True
if test_data is not None:
test_data = _reshape_norm(test_data, channels=channels,
channel_axis=channel_axis, rgb=rgb,
normalize_params=normalize_params)
return (train_data, train_labels, train_files, train_labels_files, train_probs,
diam_train, test_data, test_labels, test_files, test_labels_files,
test_probs, diam_test, normed)
def train_seg(net, train_data=None, train_labels=None, train_files=None,
train_labels_files=None, train_probs=None, test_data=None,
test_labels=None, test_files=None, test_labels_files=None,
test_probs=None, load_files=True, batch_size=8, learning_rate=0.005,
n_epochs=2000, weight_decay=1e-5, momentum=0.9, SGD=False, channels=None,
channel_axis=None, rgb=False, normalize=True, compute_flows=False,
save_path=None, save_every=100, save_each=False, nimg_per_epoch=None,
nimg_test_per_epoch=None, rescale=True, scale_range=None, bsize=224,
min_train_masks=5, model_name=None):
"""
Train the network with images for segmentation.
Args:
net (object): The network model to train.
train_data (List[np.ndarray], optional): List of arrays (2D or 3D) - images for training. Defaults to None.
train_labels (List[np.ndarray], optional): List of arrays (2D or 3D) - labels for train_data, where 0=no masks; 1,2,...=mask labels. Defaults to None.
train_files (List[str], optional): List of strings - file names for images in train_data (to save flows for future runs). Defaults to None.
train_labels_files (list or None): List of training label file paths. Defaults to None.
train_probs (List[float], optional): List of floats - probabilities for each image to be selected during training. Defaults to None.
test_data (List[np.ndarray], optional): List of arrays (2D or 3D) - images for testing. Defaults to None.
test_labels (List[np.ndarray], optional): List of arrays (2D or 3D) - labels for test_data, where 0=no masks; 1,2,...=mask labels. Defaults to None.
test_files (List[str], optional): List of strings - file names for images in test_data (to save flows for future runs). Defaults to None.
test_labels_files (list or None): List of test label file paths. Defaults to None.
test_probs (List[float], optional): List of floats - probabilities for each image to be selected during testing. Defaults to None.
load_files (bool, optional): Boolean - whether to load images and labels from files. Defaults to True.
batch_size (int, optional): Integer - number of patches to run simultaneously on the GPU. Defaults to 8.
learning_rate (float or List[float], optional): Float or list/np.ndarray - learning rate for training. Defaults to 0.005.
n_epochs (int, optional): Integer - number of times to go through the whole training set during training. Defaults to 2000.
weight_decay (float, optional): Float - weight decay for the optimizer. Defaults to 1e-5.
momentum (float, optional): Float - momentum for the optimizer. Defaults to 0.9.
SGD (bool, optional): Boolean - whether to use SGD as optimization instead of RAdam. Defaults to False.
channels (List[int], optional): List of ints - channels to use for training. Defaults to None.
channel_axis (int, optional): Integer - axis of the channel dimension in the input data. Defaults to None.
normalize (bool or dict, optional): Boolean or dictionary - whether to normalize the data. Defaults to True.
compute_flows (bool, optional): Boolean - whether to compute flows during training. Defaults to False.
save_path (str, optional): String - where to save the trained model. Defaults to None.
save_every (int, optional): Integer - save the network every [save_every] epochs. Defaults to 100.
save_each (bool, optional): Boolean - save the network to a new filename at every [save_each] epoch. Defaults to False.
nimg_per_epoch (int, optional): Integer - minimum number of images to train on per epoch. Defaults to None.
nimg_test_per_epoch (int, optional): Integer - minimum number of images to test on per epoch. Defaults to None.
rescale (bool, optional): Boolean - whether or not to rescale images during training. Defaults to True.
min_train_masks (int, optional): Integer - minimum number of masks an image must have to use in the training set. Defaults to 5.
model_name (str, optional): String - name of the network. Defaults to None.
Returns:
tuple: A tuple containing the path to the saved model weights, training losses, and test losses.
"""
device = net.device
scale_range0 = 0.5 if rescale else 1.0
scale_range = scale_range if scale_range is not None else scale_range0
if isinstance(normalize, dict):
normalize_params = {**models.normalize_default, **normalize}
elif not isinstance(normalize, bool):
raise ValueError("normalize parameter must be a bool or a dict")
else:
normalize_params = models.normalize_default
normalize_params["normalize"] = normalize
out = _process_train_test(train_data=train_data, train_labels=train_labels,
train_files=train_files, train_labels_files=train_labels_files,
train_probs=train_probs,
test_data=test_data, test_labels=test_labels,
test_files=test_files, test_labels_files=test_labels_files,
test_probs=test_probs,
load_files=load_files, min_train_masks=min_train_masks,
compute_flows=compute_flows, channels=channels,
channel_axis=channel_axis, rgb=rgb,
normalize_params=normalize_params, device=net.device)
(train_data, train_labels, train_files, train_labels_files, train_probs, diam_train,
test_data, test_labels, test_files, test_labels_files, test_probs, diam_test,
normed) = out
# already normalized, do not normalize during training
if normed:
kwargs = {}
else:
kwargs = {
"normalize_params": normalize_params,
"channels": channels,
"channel_axis": channel_axis,
"rgb": rgb
}
net.diam_labels.data = torch.Tensor([diam_train.mean()]).to(device)
nimg = len(train_data) if train_data is not None else len(train_files)
nimg_test = len(test_data) if test_data is not None else None
nimg_test = len(test_files) if test_files is not None else nimg_test
nimg_per_epoch = nimg if nimg_per_epoch is None else nimg_per_epoch
nimg_test_per_epoch = nimg_test if nimg_test_per_epoch is None else nimg_test_per_epoch
# learning rate schedule
LR = np.linspace(0, learning_rate, 10)
LR = np.append(LR, learning_rate * np.ones(max(0, n_epochs - 10)))
if n_epochs > 300:
LR = LR[:-100]
for i in range(10):
LR = np.append(LR, LR[-1] / 2 * np.ones(10))
elif n_epochs > 100:
LR = LR[:-50]
for i in range(10):
LR = np.append(LR, LR[-1] / 2 * np.ones(5))
train_logger.info(f">>> n_epochs={n_epochs}, n_train={nimg}, n_test={nimg_test}")
if not SGD:
train_logger.info(
f">>> AdamW, learning_rate={learning_rate:0.5f}, weight_decay={weight_decay:0.5f}"
)
optimizer = torch.optim.AdamW(net.parameters(), lr=learning_rate,
weight_decay=weight_decay)
else:
train_logger.info(
f">>> SGD, learning_rate={learning_rate:0.5f}, weight_decay={weight_decay:0.5f}, momentum={momentum:0.3f}"
)
optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate,
weight_decay=weight_decay, momentum=momentum)
t0 = time.time()
model_name = f"cellpose_{t0}" if model_name is None else model_name
save_path = Path.cwd() if save_path is None else Path(save_path)
filename = save_path / "models" / model_name
(save_path / "models").mkdir(exist_ok=True)
train_logger.info(f">>> saving model to {filename}")
lavg, nsum = 0, 0
train_losses, test_losses = np.zeros(n_epochs), np.zeros(n_epochs)
for iepoch in range(n_epochs):
np.random.seed(iepoch)
if nimg != nimg_per_epoch:
# choose random images for epoch with probability train_probs
rperm = np.random.choice(np.arange(0, nimg), size=(nimg_per_epoch,),
p=train_probs)
else:
# otherwise use all images
rperm = np.random.permutation(np.arange(0, nimg))
for param_group in optimizer.param_groups:
param_group["lr"] = LR[iepoch] # set learning rate
net.train()
for k in range(0, nimg_per_epoch, batch_size):
kend = min(k + batch_size, nimg_per_epoch)
inds = rperm[k:kend]
imgs, lbls = _get_batch(inds, data=train_data, labels=train_labels,
files=train_files, labels_files=train_labels_files,
**kwargs)
diams = np.array([diam_train[i] for i in inds])
rsc = diams / net.diam_mean.item() if rescale else np.ones(
len(diams), "float32")
# augmentations
imgi, lbl = transforms.random_rotate_and_resize(imgs, Y=lbls, rescale=rsc,
scale_range=scale_range,
xy=(bsize, bsize))[:2]
# network and loss optimization
X = torch.from_numpy(imgi).to(device)
y = net(X)[0]
loss = _loss_fn_seg(lbl, y, device)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss = loss.item()
train_loss *= len(imgi)
# keep track of average training loss across epochs
lavg += train_loss
nsum += len(imgi)
# per epoch training loss
train_losses[iepoch] += train_loss
train_losses[iepoch] /= nimg_per_epoch
if iepoch == 5 or iepoch % 10 == 0:
lavgt = 0.
if test_data is not None or test_files is not None:
np.random.seed(42)
if nimg_test != nimg_test_per_epoch:
rperm = np.random.choice(np.arange(0, nimg_test),
size=(nimg_test_per_epoch,), p=test_probs)
else:
rperm = np.random.permutation(np.arange(0, nimg_test))
for ibatch in range(0, len(rperm), batch_size):
with torch.no_grad():
net.eval()
inds = rperm[ibatch:ibatch + batch_size]
imgs, lbls = _get_batch(inds, data=test_data,
labels=test_labels, files=test_files,
labels_files=test_labels_files,
**kwargs)
diams = np.array([diam_test[i] for i in inds])
rsc = diams / net.diam_mean.item() if rescale else np.ones(
len(diams), "float32")
imgi, lbl = transforms.random_rotate_and_resize(
imgs, Y=lbls, rescale=rsc, scale_range=scale_range,
xy=(bsize, bsize))[:2]
X = torch.from_numpy(imgi).to(device)
y = net(X)[0]
loss = _loss_fn_seg(lbl, y, device)
test_loss = loss.item()
test_loss *= len(imgi)
lavgt += test_loss
lavgt /= len(rperm)
test_losses[iepoch] = lavgt
lavg /= nsum
train_logger.info(
f"{iepoch}, train_loss={lavg:.4f}, test_loss={lavgt:.4f}, LR={LR[iepoch]:.6f}, time {time.time()-t0:.2f}s"
)
lavg, nsum = 0, 0
if iepoch == n_epochs - 1 or (iepoch % save_every == 0 and iepoch != 0):
if save_each and iepoch != n_epochs - 1: #separate files as model progresses
filename0 = str(filename) + f"_epoch_{iepoch:04d}"
else:
filename0 = filename
train_logger.info(f"saving network parameters to {filename0}")
net.save_model(filename0)
net.save_model(filename)
return filename, train_losses, test_losses
def train_size(net, pretrained_model, train_data=None, train_labels=None,
train_files=None, train_labels_files=None, train_probs=None,
test_data=None, test_labels=None, test_files=None,
test_labels_files=None, test_probs=None, load_files=True,
min_train_masks=5, channels=None, channel_axis=None, rgb=False,
normalize=True, nimg_per_epoch=None, nimg_test_per_epoch=None,
batch_size=64, scale_range=1.0, bsize=512, l2_regularization=1.0,
n_epochs=10):
"""Train the size model.
Args:
net (object): The neural network model.
pretrained_model (str): The path to the pretrained model.
train_data (numpy.ndarray, optional): The training data. Defaults to None.
train_labels (numpy.ndarray, optional): The training labels. Defaults to None.
train_files (list, optional): The training file paths. Defaults to None.
train_labels_files (list, optional): The training label file paths. Defaults to None.
train_probs (numpy.ndarray, optional): The training probabilities. Defaults to None.
test_data (numpy.ndarray, optional): The test data. Defaults to None.
test_labels (numpy.ndarray, optional): The test labels. Defaults to None.
test_files (list, optional): The test file paths. Defaults to None.
test_labels_files (list, optional): The test label file paths. Defaults to None.
test_probs (numpy.ndarray, optional): The test probabilities. Defaults to None.
load_files (bool, optional): Whether to load files. Defaults to True.
min_train_masks (int, optional): The minimum number of training masks. Defaults to 5.
channels (list, optional): The channels. Defaults to None.
channel_axis (int, optional): The channel axis. Defaults to None.
normalize (bool or dict, optional): Whether to normalize the data. Defaults to True.
nimg_per_epoch (int, optional): The number of images per epoch. Defaults to None.
nimg_test_per_epoch (int, optional): The number of test images per epoch. Defaults to None.
batch_size (int, optional): The batch size. Defaults to 64.
l2_regularization (float, optional): The L2 regularization factor. Defaults to 1.0.
n_epochs (int, optional): The number of epochs. Defaults to 10.
Returns:
dict: The trained size model parameters.
"""
if isinstance(normalize, dict):
normalize_params = {**models.normalize_default, **normalize}
elif not isinstance(normalize, bool):
raise ValueError("normalize parameter must be a bool or a dict")
else:
normalize_params = models.normalize_default
normalize_params["normalize"] = normalize
out = _process_train_test(
train_data=train_data, train_labels=train_labels, train_files=train_files,
train_labels_files=train_labels_files, train_probs=train_probs,
test_data=test_data, test_labels=test_labels, test_files=test_files,
test_labels_files=test_labels_files, test_probs=test_probs,
load_files=load_files, min_train_masks=min_train_masks, compute_flows=False,
channels=channels, channel_axis=channel_axis, normalize_params=normalize_params,
device=net.device)
(train_data, train_labels, train_files, train_labels_files, train_probs, diam_train,
test_data, test_labels, test_files, test_labels_files, test_probs, diam_test,
normed) = out
# already normalized, do not normalize during training
if normed:
kwargs = {}
else:
kwargs = {
"normalize_params": normalize_params,
"channels": channels,
"channel_axis": channel_axis,
"rgb": rgb
}
nimg = len(train_data) if train_data is not None else len(train_files)
nimg_test = len(test_data) if test_data is not None else None
nimg_test = len(test_files) if test_files is not None else nimg_test
nimg_per_epoch = nimg if nimg_per_epoch is None else nimg_per_epoch
nimg_test_per_epoch = nimg_test if nimg_test_per_epoch is None else nimg_test_per_epoch
diam_mean = net.diam_mean.item()
device = net.device
net.eval()
styles = np.zeros((n_epochs * nimg_per_epoch, 256), np.float32)
diams = np.zeros((n_epochs * nimg_per_epoch,), np.float32)
tic = time.time()
for iepoch in range(n_epochs):
np.random.seed(iepoch)
if nimg != nimg_per_epoch:
rperm = np.random.choice(np.arange(0, nimg), size=(nimg_per_epoch,),
p=train_probs)
else:
rperm = np.random.permutation(np.arange(0, nimg))
for ibatch in range(0, nimg_per_epoch, batch_size):
inds_batch = np.arange(ibatch, min(nimg_per_epoch, ibatch + batch_size))
inds = rperm[inds_batch]
imgs, lbls = _get_batch(inds, data=train_data, labels=train_labels,
files=train_files, **kwargs)
diami = diam_train[inds].copy()
imgi, lbl, scale = transforms.random_rotate_and_resize(
imgs, scale_range=scale_range, xy=(bsize, bsize))
imgi = torch.from_numpy(imgi).to(device)
with torch.no_grad():
feat = net(imgi)[1]
indsi = inds_batch + nimg_per_epoch * iepoch
styles[indsi] = feat.cpu().numpy()
diams[indsi] = np.log(diami) - np.log(diam_mean) + np.log(scale)
del feat
train_logger.info("ran %d epochs in %0.3f sec" %
(iepoch + 1, time.time() - tic))
l2_regularization = 1.
# create model
smean = styles.copy().mean(axis=0)
X = ((styles.copy() - smean).T).copy()
ymean = diams.copy().mean()
y = diams.copy() - ymean
A = np.linalg.solve(X @ X.T + l2_regularization * np.eye(X.shape[0]), X @ y)
ypred = A @ X
train_logger.info("train correlation: %0.4f" % np.corrcoef(y, ypred)[0, 1])
if nimg_test:
np.random.seed(0)
styles_test = np.zeros((nimg_test_per_epoch, 256), np.float32)
diams_test = np.zeros((nimg_test_per_epoch,), np.float32)
diams_test0 = np.zeros((nimg_test_per_epoch,), np.float32)
if nimg_test != nimg_test_per_epoch:
rperm = np.random.choice(np.arange(0, nimg_test),
size=(nimg_test_per_epoch,), p=test_probs)
else:
rperm = np.random.permutation(np.arange(0, nimg_test))
for ibatch in range(0, nimg_test_per_epoch, batch_size):
inds_batch = np.arange(ibatch, min(nimg_test_per_epoch,
ibatch + batch_size))
inds = rperm[inds_batch]
imgs, lbls = _get_batch(inds, data=test_data, labels=test_labels,
files=test_files, labels_files=test_labels_files,
**kwargs)
diami = diam_test[inds].copy()
imgi, lbl, scale = transforms.random_rotate_and_resize(
imgs, Y=lbls, scale_range=scale_range, xy=(bsize, bsize))
imgi = torch.from_numpy(imgi).to(device)
diamt = np.array([utils.diameters(lbl0[0])[0] for lbl0 in lbl])
diamt = np.maximum(5., diamt)
with torch.no_grad():
feat = net(imgi)[1]
styles_test[inds_batch] = feat.cpu().numpy()
diams_test[inds_batch] = np.log(diami) - np.log(diam_mean) + np.log(scale)
diams_test0[inds_batch] = diamt
diam_test_pred = np.exp(A @ (styles_test - smean).T + np.log(diam_mean) + ymean)
diam_test_pred = np.maximum(5., diam_test_pred)
train_logger.info("test correlation: %0.4f" %
np.corrcoef(diams_test0, diam_test_pred)[0, 1])
pretrained_size = str(pretrained_model) + "_size.npy"
params = {"A": A, "smean": smean, "diam_mean": diam_mean, "ymean": ymean}
np.save(pretrained_size, params)
train_logger.info("model saved to " + pretrained_size)
return params
|