Spaces:
Sleeping
Sleeping
File size: 43,642 Bytes
9060565 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 |
"""
Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu.
"""
import logging
import warnings
import cv2
import numpy as np
import torch
from scipy.ndimage import gaussian_filter1d
from torch.fft import fft2, fftshift, ifft2
transforms_logger = logging.getLogger(__name__)
def _taper_mask(ly=224, lx=224, sig=7.5):
"""
Generate a taper mask.
Args:
ly (int): The height of the mask. Default is 224.
lx (int): The width of the mask. Default is 224.
sig (float): The sigma value for the tapering function. Default is 7.5.
Returns:
numpy.ndarray: The taper mask.
"""
bsize = max(224, max(ly, lx))
xm = np.arange(bsize)
xm = np.abs(xm - xm.mean())
mask = 1 / (1 + np.exp((xm - (bsize / 2 - 20)) / sig))
mask = mask * mask[:, np.newaxis]
mask = mask[bsize // 2 - ly // 2:bsize // 2 + ly // 2 + ly % 2,
bsize // 2 - lx // 2:bsize // 2 + lx // 2 + lx % 2]
return mask
def unaugment_tiles(y):
"""Reverse test-time augmentations for averaging (includes flipping of flowsY and flowsX).
Args:
y (float32): Array of shape (ntiles_y, ntiles_x, chan, Ly, Lx) where chan = (flowsY, flowsX, cell prob).
Returns:
float32: Array of shape (ntiles_y, ntiles_x, chan, Ly, Lx).
"""
for j in range(y.shape[0]):
for i in range(y.shape[1]):
if j % 2 == 0 and i % 2 == 1:
y[j, i] = y[j, i, :, ::-1, :]
y[j, i, 0] *= -1
elif j % 2 == 1 and i % 2 == 0:
y[j, i] = y[j, i, :, :, ::-1]
y[j, i, 1] *= -1
elif j % 2 == 1 and i % 2 == 1:
y[j, i] = y[j, i, :, ::-1, ::-1]
y[j, i, 0] *= -1
y[j, i, 1] *= -1
return y
def average_tiles(y, ysub, xsub, Ly, Lx):
"""
Average the results of the network over tiles.
Args:
y (float): Output of cellpose network for each tile. Shape: [ntiles x nclasses x bsize x bsize]
ysub (list): List of arrays with start and end of tiles in Y of length ntiles
xsub (list): List of arrays with start and end of tiles in X of length ntiles
Ly (int): Size of pre-tiled image in Y (may be larger than original image if image size is less than bsize)
Lx (int): Size of pre-tiled image in X (may be larger than original image if image size is less than bsize)
Returns:
yf (float32): Network output averaged over tiles. Shape: [nclasses x Ly x Lx]
"""
Navg = np.zeros((Ly, Lx))
yf = np.zeros((y.shape[1], Ly, Lx), np.float32)
# taper edges of tiles
mask = _taper_mask(ly=y.shape[-2], lx=y.shape[-1])
for j in range(len(ysub)):
yf[:, ysub[j][0]:ysub[j][1], xsub[j][0]:xsub[j][1]] += y[j] * mask
Navg[ysub[j][0]:ysub[j][1], xsub[j][0]:xsub[j][1]] += mask
yf /= Navg
return yf
def make_tiles(imgi, bsize=224, augment=False, tile_overlap=0.1):
"""Make tiles of image to run at test-time.
Args:
imgi (np.ndarray): Array of shape (nchan, Ly, Lx) representing the input image.
bsize (int, optional): Size of tiles. Defaults to 224.
augment (bool, optional): Whether to flip tiles and set tile_overlap=2. Defaults to False.
tile_overlap (float, optional): Fraction of overlap of tiles. Defaults to 0.1.
Returns:
A tuple containing (IMG, ysub, xsub, Ly, Lx):
IMG (np.ndarray): Array of shape (ntiles, nchan, bsize, bsize) representing the tiles.
ysub (list): List of arrays with start and end of tiles in Y of length ntiles.
xsub (list): List of arrays with start and end of tiles in X of length ntiles.
Ly (int): Height of the input image.
Lx (int): Width of the input image.
"""
nchan, Ly, Lx = imgi.shape
if augment:
bsize = np.int32(bsize)
# pad if image smaller than bsize
if Ly < bsize:
imgi = np.concatenate((imgi, np.zeros((nchan, bsize - Ly, Lx))), axis=1)
Ly = bsize
if Lx < bsize:
imgi = np.concatenate((imgi, np.zeros((nchan, Ly, bsize - Lx))), axis=2)
Ly, Lx = imgi.shape[-2:]
# tiles overlap by half of tile size
ny = max(2, int(np.ceil(2. * Ly / bsize)))
nx = max(2, int(np.ceil(2. * Lx / bsize)))
ystart = np.linspace(0, Ly - bsize, ny).astype(int)
xstart = np.linspace(0, Lx - bsize, nx).astype(int)
ysub = []
xsub = []
# flip tiles so that overlapping segments are processed in rotation
IMG = np.zeros((len(ystart), len(xstart), nchan, bsize, bsize), np.float32)
for j in range(len(ystart)):
for i in range(len(xstart)):
ysub.append([ystart[j], ystart[j] + bsize])
xsub.append([xstart[i], xstart[i] + bsize])
IMG[j, i] = imgi[:, ysub[-1][0]:ysub[-1][1], xsub[-1][0]:xsub[-1][1]]
# flip tiles to allow for augmentation of overlapping segments
if j % 2 == 0 and i % 2 == 1:
IMG[j, i] = IMG[j, i, :, ::-1, :]
elif j % 2 == 1 and i % 2 == 0:
IMG[j, i] = IMG[j, i, :, :, ::-1]
elif j % 2 == 1 and i % 2 == 1:
IMG[j, i] = IMG[j, i, :, ::-1, ::-1]
else:
tile_overlap = min(0.5, max(0.05, tile_overlap))
bsizeY, bsizeX = min(bsize, Ly), min(bsize, Lx)
bsizeY = np.int32(bsizeY)
bsizeX = np.int32(bsizeX)
# tiles overlap by 10% tile size
ny = 1 if Ly <= bsize else int(np.ceil((1. + 2 * tile_overlap) * Ly / bsize))
nx = 1 if Lx <= bsize else int(np.ceil((1. + 2 * tile_overlap) * Lx / bsize))
ystart = np.linspace(0, Ly - bsizeY, ny).astype(int)
xstart = np.linspace(0, Lx - bsizeX, nx).astype(int)
ysub = []
xsub = []
IMG = np.zeros((len(ystart), len(xstart), nchan, bsizeY, bsizeX), np.float32)
for j in range(len(ystart)):
for i in range(len(xstart)):
ysub.append([ystart[j], ystart[j] + bsizeY])
xsub.append([xstart[i], xstart[i] + bsizeX])
IMG[j, i] = imgi[:, ysub[-1][0]:ysub[-1][1], xsub[-1][0]:xsub[-1][1]]
return IMG, ysub, xsub, Ly, Lx
def normalize99(Y, lower=1, upper=99, copy=True, downsample=False):
"""
Normalize the image so that 0.0 corresponds to the 1st percentile and 1.0 corresponds to the 99th percentile.
Args:
Y (ndarray): The input image (for downsample, use [Ly x Lx] or [Lz x Ly x Lx]).
lower (int, optional): The lower percentile. Defaults to 1.
upper (int, optional): The upper percentile. Defaults to 99.
copy (bool, optional): Whether to create a copy of the input image. Defaults to True.
downsample (bool, optional): Whether to downsample image to compute percentiles. Defaults to False.
Returns:
ndarray: The normalized image.
"""
X = Y.copy() if copy else Y
X = X.astype("float32") if X.dtype!="float64" and X.dtype!="float32" else X
if downsample and X.size > 224**3:
nskip = [max(1, X.shape[i] // 224) for i in range(X.ndim)]
nskip[0] = max(1, X.shape[0] // 50) if X.ndim == 3 else nskip[0]
slc = tuple([slice(0, X.shape[i], nskip[i]) for i in range(X.ndim)])
x01 = np.percentile(X[slc], lower)
x99 = np.percentile(X[slc], upper)
else:
x01 = np.percentile(X, lower)
x99 = np.percentile(X, upper)
if x99 - x01 > 1e-3:
X -= x01
X /= (x99 - x01)
else:
X[:] = 0
return X
def normalize99_tile(img, blocksize=100, lower=1., upper=99., tile_overlap=0.1,
norm3D=False, smooth3D=1, is3D=False):
"""Compute normalization like normalize99 function but in tiles.
Args:
img (numpy.ndarray): Array of shape (Lz x) Ly x Lx (x nchan) containing the image.
blocksize (float, optional): Size of tiles. Defaults to 100.
lower (float, optional): Lower percentile for normalization. Defaults to 1.0.
upper (float, optional): Upper percentile for normalization. Defaults to 99.0.
tile_overlap (float, optional): Fraction of overlap of tiles. Defaults to 0.1.
norm3D (bool, optional): Use same tiled normalization for each z-plane. Defaults to False.
smooth3D (int, optional): Smoothing factor for 3D normalization. Defaults to 1.
is3D (bool, optional): Set to True if image is a 3D stack. Defaults to False.
Returns:
numpy.ndarray: Normalized image array of shape (Lz x) Ly x Lx (x nchan).
"""
is1c = True if img.ndim == 2 or (is3D and img.ndim == 3) else False
is3D = True if img.ndim > 3 or (is3D and img.ndim == 3) else False
img = img[..., np.newaxis] if is1c else img
img = img[np.newaxis, ...] if img.ndim == 3 else img
Lz, Ly, Lx, nchan = img.shape
tile_overlap = min(0.5, max(0.05, tile_overlap))
blocksizeY, blocksizeX = min(blocksize, Ly), min(blocksize, Lx)
blocksizeY = np.int32(blocksizeY)
blocksizeX = np.int32(blocksizeX)
# tiles overlap by 10% tile size
ny = 1 if Ly <= blocksize else int(np.ceil(
(1. + 2 * tile_overlap) * Ly / blocksize))
nx = 1 if Lx <= blocksize else int(np.ceil(
(1. + 2 * tile_overlap) * Lx / blocksize))
ystart = np.linspace(0, Ly - blocksizeY, ny).astype(int)
xstart = np.linspace(0, Lx - blocksizeX, nx).astype(int)
ysub = []
xsub = []
for j in range(len(ystart)):
for i in range(len(xstart)):
ysub.append([ystart[j], ystart[j] + blocksizeY])
xsub.append([xstart[i], xstart[i] + blocksizeX])
x01_tiles_z = []
x99_tiles_z = []
for z in range(Lz):
IMG = np.zeros((len(ystart), len(xstart), blocksizeY, blocksizeX, nchan),
"float32")
k = 0
for j in range(len(ystart)):
for i in range(len(xstart)):
IMG[j, i] = img[z, ysub[k][0]:ysub[k][1], xsub[k][0]:xsub[k][1], :]
k += 1
x01_tiles = np.percentile(IMG, lower, axis=(-3, -2))
x99_tiles = np.percentile(IMG, upper, axis=(-3, -2))
# fill areas with small differences with neighboring squares
to_fill = np.zeros(x01_tiles.shape[:2], "bool")
for c in range(nchan):
to_fill = x99_tiles[:, :, c] - x01_tiles[:, :, c] < +1e-3
if to_fill.sum() > 0 and to_fill.sum() < x99_tiles[:, :, c].size:
fill_vals = np.nonzero(to_fill)
fill_neigh = np.nonzero(~to_fill)
nearest_neigh = (
(fill_vals[0] - fill_neigh[0][:, np.newaxis])**2 +
(fill_vals[1] - fill_neigh[1][:, np.newaxis])**2).argmin(axis=0)
x01_tiles[fill_vals[0], fill_vals[1],
c] = x01_tiles[fill_neigh[0][nearest_neigh],
fill_neigh[1][nearest_neigh], c]
x99_tiles[fill_vals[0], fill_vals[1],
c] = x99_tiles[fill_neigh[0][nearest_neigh],
fill_neigh[1][nearest_neigh], c]
elif to_fill.sum() > 0 and to_fill.sum() == x99_tiles[:, :, c].size:
x01_tiles[:, :, c] = 0
x99_tiles[:, :, c] = 1
x01_tiles_z.append(x01_tiles)
x99_tiles_z.append(x99_tiles)
x01_tiles_z = np.array(x01_tiles_z)
x99_tiles_z = np.array(x99_tiles_z)
# do not smooth over z-axis if not normalizing separately per plane
for a in range(2):
x01_tiles_z = gaussian_filter1d(x01_tiles_z, 1, axis=a)
x99_tiles_z = gaussian_filter1d(x99_tiles_z, 1, axis=a)
if norm3D:
smooth3D = 1 if smooth3D == 0 else smooth3D
x01_tiles_z = gaussian_filter1d(x01_tiles_z, smooth3D, axis=a)
x99_tiles_z = gaussian_filter1d(x99_tiles_z, smooth3D, axis=a)
if not norm3D and Lz > 1:
x01 = np.zeros((len(x01_tiles_z), Ly, Lx, nchan), "float32")
x99 = np.zeros((len(x01_tiles_z), Ly, Lx, nchan), "float32")
for z in range(Lz):
x01_rsz = cv2.resize(x01_tiles_z[z], (Lx, Ly),
interpolation=cv2.INTER_LINEAR)
x01[z] = x01_rsz[..., np.newaxis] if nchan == 1 else x01_rsz
x99_rsz = cv2.resize(x99_tiles_z[z], (Lx, Ly),
interpolation=cv2.INTER_LINEAR)
x99[z] = x99_rsz[..., np.newaxis] if nchan == 1 else x01_rsz
if (x99 - x01).min() < 1e-3:
raise ZeroDivisionError(
"cannot use norm3D=False with tile_norm, sample is too sparse; set norm3D=True or tile_norm=0"
)
else:
x01 = cv2.resize(x01_tiles_z.mean(axis=0), (Lx, Ly),
interpolation=cv2.INTER_LINEAR)
x99 = cv2.resize(x99_tiles_z.mean(axis=0), (Lx, Ly),
interpolation=cv2.INTER_LINEAR)
if x01.ndim < 3:
x01 = x01[..., np.newaxis]
x99 = x99[..., np.newaxis]
if is1c:
img, x01, x99 = img.squeeze(), x01.squeeze(), x99.squeeze()
elif not is3D:
img, x01, x99 = img[0], x01[0], x99[0]
# normalize
img -= x01
img /= (x99 - x01)
return img
def gaussian_kernel(sigma, Ly, Lx, device=torch.device("cpu")):
"""
Generates a 2D Gaussian kernel.
Args:
sigma (float): Standard deviation of the Gaussian distribution.
Ly (int): Number of pixels in the y-axis.
Lx (int): Number of pixels in the x-axis.
device (torch.device, optional): Device to store the kernel tensor. Defaults to torch.device("cpu").
Returns:
torch.Tensor: 2D Gaussian kernel tensor.
"""
y = torch.linspace(-Ly / 2, Ly / 2 + 1, Ly, device=device)
x = torch.linspace(-Ly / 2, Ly / 2 + 1, Lx, device=device)
y, x = torch.meshgrid(y, x, indexing="ij")
kernel = torch.exp(-(y**2 + x**2) / (2 * sigma**2))
kernel /= kernel.sum()
return kernel
def smooth_sharpen_img(img, smooth_radius=6, sharpen_radius=12,
device=torch.device("cpu"), is3D=False):
"""Sharpen blurry images with surround subtraction and/or smooth noisy images.
Args:
img (float32): Array that's (Lz x) Ly x Lx (x nchan).
smooth_radius (float, optional): Size of gaussian smoothing filter, recommended to be 1/10-1/4 of cell diameter
(if also sharpening, should be 2-3x smaller than sharpen_radius). Defaults to 6.
sharpen_radius (float, optional): Size of gaussian surround filter, recommended to be 1/8-1/2 of cell diameter
(if also smoothing, should be 2-3x larger than smooth_radius). Defaults to 12.
device (torch.device, optional): Device on which to perform sharpening.
Will be faster on GPU but need to ensure GPU has RAM for image. Defaults to torch.device("cpu").
is3D (bool, optional): If image is 3D stack (only necessary to set if img.ndim==3). Defaults to False.
Returns:
img_sharpen (float32): Array that's (Lz x) Ly x Lx (x nchan).
"""
img_sharpen = torch.from_numpy(img.astype("float32")).to(device)
shape = img_sharpen.shape
is1c = True if img_sharpen.ndim == 2 or (is3D and img_sharpen.ndim == 3) else False
is3D = True if img_sharpen.ndim > 3 or (is3D and img_sharpen.ndim == 3) else False
img_sharpen = img_sharpen.unsqueeze(-1) if is1c else img_sharpen
img_sharpen = img_sharpen.unsqueeze(0) if img_sharpen.ndim == 3 else img_sharpen
Lz, Ly, Lx, nchan = img_sharpen.shape
if smooth_radius > 0:
kernel = gaussian_kernel(smooth_radius, Ly, Lx, device=device)
if sharpen_radius > 0:
kernel += -1 * gaussian_kernel(sharpen_radius, Ly, Lx, device=device)
elif sharpen_radius > 0:
kernel = -1 * gaussian_kernel(sharpen_radius, Ly, Lx, device=device)
kernel[Ly // 2, Lx // 2] = 1
fhp = fft2(kernel)
for z in range(Lz):
for c in range(nchan):
img_filt = torch.real(ifft2(
fft2(img_sharpen[z, :, :, c]) * torch.conj(fhp)))
img_filt = fftshift(img_filt)
img_sharpen[z, :, :, c] = img_filt
img_sharpen = img_sharpen.reshape(shape)
return img_sharpen.cpu().numpy()
def move_axis(img, m_axis=-1, first=True):
""" move axis m_axis to first or last position """
if m_axis == -1:
m_axis = img.ndim - 1
m_axis = min(img.ndim - 1, m_axis)
axes = np.arange(0, img.ndim)
if first:
axes[1:m_axis + 1] = axes[:m_axis]
axes[0] = m_axis
else:
axes[m_axis:-1] = axes[m_axis + 1:]
axes[-1] = m_axis
img = img.transpose(tuple(axes))
return img
def move_min_dim(img, force=False):
"""Move the minimum dimension last as channels if it is less than 10 or force is True.
Args:
img (ndarray): The input image.
force (bool, optional): If True, the minimum dimension will always be moved.
Defaults to False.
Returns:
ndarray: The image with the minimum dimension moved to the last axis as channels.
"""
if len(img.shape) > 2:
min_dim = min(img.shape)
if min_dim < 10 or force:
if img.shape[-1] == min_dim:
channel_axis = -1
else:
channel_axis = (img.shape).index(min_dim)
img = move_axis(img, m_axis=channel_axis, first=False)
return img
def update_axis(m_axis, to_squeeze, ndim):
"""
Squeeze the axis value based on the given parameters.
Args:
m_axis (int): The current axis value.
to_squeeze (numpy.ndarray): An array of indices to squeeze.
ndim (int): The number of dimensions.
Returns:
int or None: The updated axis value.
"""
if m_axis == -1:
m_axis = ndim - 1
if (to_squeeze == m_axis).sum() == 1:
m_axis = None
else:
inds = np.ones(ndim, bool)
inds[to_squeeze] = False
m_axis = np.nonzero(np.arange(0, ndim)[inds] == m_axis)[0]
if len(m_axis) > 0:
m_axis = m_axis[0]
else:
m_axis = None
return m_axis
def convert_image(x, channels, channel_axis=None, z_axis=None, do_3D=False, nchan=2):
"""Converts the image to have the z-axis first, channels last.
Args:
x (numpy.ndarray or torch.Tensor): The input image.
channels (list or None): The list of channels to use (ones-based, 0=gray). If None, all channels are kept.
channel_axis (int or None): The axis of the channels in the input image. If None, the axis is determined automatically.
z_axis (int or None): The axis of the z-dimension in the input image. If None, the axis is determined automatically.
do_3D (bool): Whether to process the image in 3D mode. Defaults to False.
nchan (int): The number of channels to keep if the input image has more than nchan channels.
Returns:
numpy.ndarray: The converted image.
Raises:
ValueError: If the input image has less than two channels and channels are not specified.
ValueError: If the input image is 2D and do_3D is True.
ValueError: If the input image is 4D and do_3D is False.
"""
# check if image is a torch array instead of numpy array
# converts torch to numpy
ndim = x.ndim
if torch.is_tensor(x):
transforms_logger.warning("torch array used as input, converting to numpy")
x = x.cpu().numpy()
# squeeze image, and if channel_axis or z_axis given, transpose image
if x.ndim > 3:
to_squeeze = np.array([int(isq) for isq, s in enumerate(x.shape) if s == 1])
# remove channel axis if number of channels is 1
if len(to_squeeze) > 0:
channel_axis = update_axis(
channel_axis, to_squeeze,
x.ndim) if channel_axis is not None else None
z_axis = update_axis(z_axis, to_squeeze,
x.ndim) if z_axis is not None else None
x = x.squeeze()
# put z axis first
if z_axis is not None and x.ndim > 2 and z_axis != 0:
x = move_axis(x, m_axis=z_axis, first=True)
if channel_axis is not None:
channel_axis += 1
z_axis = 0
elif z_axis is None and x.ndim > 2 and channels is not None and min(x.shape) > 5 :
# if there are > 5 channels and channels!=None, assume first dimension is z
min_dim = min(x.shape)
if min_dim != channel_axis:
z_axis = (x.shape).index(min_dim)
if z_axis != 0:
x = move_axis(x, m_axis=z_axis, first=True)
if channel_axis is not None:
channel_axis += 1
transforms_logger.warning(f"z_axis not specified, assuming it is dim {z_axis}")
transforms_logger.warning(f"if this is actually the channel_axis, use 'model.eval(channel_axis={z_axis}, ...)'")
z_axis = 0
if z_axis is not None:
if x.ndim == 3:
x = x[..., np.newaxis]
# put channel axis last
if channel_axis is not None and x.ndim > 2:
x = move_axis(x, m_axis=channel_axis, first=False)
elif x.ndim == 2:
x = x[:, :, np.newaxis]
if do_3D:
if ndim < 3:
transforms_logger.critical("ERROR: cannot process 2D images in 3D mode")
raise ValueError("ERROR: cannot process 2D images in 3D mode")
elif x.ndim < 4:
x = x[..., np.newaxis]
if channel_axis is None:
x = move_min_dim(x)
if x.ndim > 3:
transforms_logger.info(
"multi-stack tiff read in as having %d planes %d channels" %
(x.shape[0], x.shape[-1]))
# convert to float32
x = x.astype("float32")
if channels is not None:
channels = channels[0] if len(channels) == 1 else channels
if len(channels) < 2:
transforms_logger.critical("ERROR: two channels not specified")
raise ValueError("ERROR: two channels not specified")
x = reshape(x, channels=channels)
else:
# code above put channels last
if nchan is not None and x.shape[-1] > nchan:
transforms_logger.warning(
"WARNING: more than %d channels given, use 'channels' input for specifying channels - just using first %d channels to run processing"
% (nchan, nchan))
x = x[..., :nchan]
# if not do_3D and x.ndim > 3:
# transforms_logger.critical("ERROR: cannot process 4D images in 2D mode")
# raise ValueError("ERROR: cannot process 4D images in 2D mode")
if nchan is not None and x.shape[-1] < nchan:
x = np.concatenate((x, np.tile(np.zeros_like(x), (1, 1, nchan - 1))),
axis=-1)
return x
def reshape(data, channels=[0, 0], chan_first=False):
"""Reshape data using channels.
Args:
data (numpy.ndarray): The input data. It should have shape (Z x ) Ly x Lx x nchan
if data.ndim==3 and data.shape[0]<8, it is assumed to be nchan x Ly x Lx.
channels (list of int, optional): The channels to use for reshaping. The first element
of the list is the channel to segment (0=grayscale, 1=red, 2=green, 3=blue). The
second element of the list is the optional nuclear channel (0=none, 1=red, 2=green, 3=blue).
For instance, to train on grayscale images, input [0,0]. To train on images with cells
in green and nuclei in blue, input [2,3]. Defaults to [0, 0].
chan_first (bool, optional): Whether to return the reshaped data with channel as the first
dimension. Defaults to False.
Returns:
numpy.ndarray: The reshaped data with shape (Z x ) Ly x Lx x nchan (if chan_first==False).
"""
if data.ndim < 3:
data = data[:, :, np.newaxis]
elif data.shape[0] < 8 and data.ndim == 3:
data = np.transpose(data, (1, 2, 0))
# use grayscale image
if data.shape[-1] == 1:
data = np.concatenate((data, np.zeros(data.shape, "float32")), axis=-1)
else:
if channels[0] == 0:
data = data.mean(axis=-1, keepdims=True)
data = np.concatenate((data, np.zeros(data.shape, "float32")), axis=-1)
else:
chanid = [channels[0] - 1]
if channels[1] > 0:
chanid.append(channels[1] - 1)
data = data[..., chanid]
for i in range(data.shape[-1]):
if np.ptp(data[..., i]) == 0.0:
if i == 0:
warnings.warn("'chan to seg' to seg has value range of ZERO")
else:
warnings.warn(
"'chan2 (opt)' has value range of ZERO, can instead set chan2 to 0"
)
if data.shape[-1] == 1:
data = np.concatenate((data, np.zeros(data.shape, "float32")), axis=-1)
if chan_first:
if data.ndim == 4:
data = np.transpose(data, (3, 0, 1, 2))
else:
data = np.transpose(data, (2, 0, 1))
return data
def normalize_img(img, normalize=True, norm3D=True, invert=False, lowhigh=None,
percentile=(1., 99.), sharpen_radius=0, smooth_radius=0,
tile_norm_blocksize=0, tile_norm_smooth3D=1, axis=-1):
"""Normalize each channel of the image with optional inversion, smoothing, and sharpening.
Args:
img (ndarray): The input image. It should have at least 3 dimensions.
If it is 4-dimensional, it assumes the first non-channel axis is the Z dimension.
normalize (bool, optional): Whether to perform normalization. Defaults to True.
norm3D (bool, optional): Whether to normalize in 3D. If True, the entire 3D stack will
be normalized per channel. If False, normalization is applied per Z-slice. Defaults to False.
invert (bool, optional): Whether to invert the image. Useful if cells are dark instead of bright.
Defaults to False.
lowhigh (tuple or ndarray, optional): The lower and upper bounds for normalization.
Can be a tuple of two values (applied to all channels) or an array of shape (nchan, 2)
for per-channel normalization. Incompatible with smoothing and sharpening.
Defaults to None.
percentile (tuple, optional): The lower and upper percentiles for normalization. If provided, it should be
a tuple of two values. Each value should be between 0 and 100. Defaults to (1.0, 99.0).
sharpen_radius (int, optional): The radius for sharpening the image. Defaults to 0.
smooth_radius (int, optional): The radius for smoothing the image. Defaults to 0.
tile_norm_blocksize (int, optional): The block size for tile-based normalization. Defaults to 0.
tile_norm_smooth3D (int, optional): The smoothness factor for tile-based normalization in 3D. Defaults to 1.
axis (int, optional): The channel axis to loop over for normalization. Defaults to -1.
Returns:
ndarray: The normalized image of the same size.
Raises:
ValueError: If the image has less than 3 dimensions.
ValueError: If the provided lowhigh or percentile values are invalid.
ValueError: If the image is inverted without normalization.
"""
if img.ndim < 3:
error_message = "Image needs to have at least 3 dimensions"
transforms_logger.critical(error_message)
raise ValueError(error_message)
img_norm = img if img.dtype=="float32" else img.astype(np.float32)
if axis != -1 and axis != img_norm.ndim - 1:
img_norm = np.moveaxis(img_norm, axis, -1) # Move channel axis to last
nchan = img_norm.shape[-1]
# Validate and handle lowhigh bounds
if lowhigh is not None:
lowhigh = np.array(lowhigh)
if lowhigh.shape == (2,):
lowhigh = np.tile(lowhigh, (nchan, 1)) # Expand to per-channel bounds
elif lowhigh.shape != (nchan, 2):
error_message = "`lowhigh` must have shape (2,) or (nchan, 2)"
transforms_logger.critical(error_message)
raise ValueError(error_message)
# Validate percentile
if percentile is None:
percentile = (1.0, 99.0)
elif not (0 <= percentile[0] < percentile[1] <= 100):
error_message = "Invalid percentile range, should be between 0 and 100"
transforms_logger.critical(error_message)
raise ValueError(error_message)
# Apply normalization based on lowhigh or percentile
cgood = np.zeros(nchan, "bool")
if lowhigh is not None:
for c in range(nchan):
lower = lowhigh[c, 0]
upper = lowhigh[c, 1]
img_norm[..., c] -= lower
img_norm[..., c] /= (upper - lower)
cgood[c] = True
else:
# Apply sharpening and smoothing if specified
if sharpen_radius > 0 or smooth_radius > 0:
img_norm = smooth_sharpen_img(
img_norm, sharpen_radius=sharpen_radius, smooth_radius=smooth_radius
)
# Apply tile-based normalization or standard normalization
if tile_norm_blocksize > 0:
img_norm = normalize99_tile(
img_norm,
blocksize=tile_norm_blocksize,
lower=percentile[0],
upper=percentile[1],
smooth3D=tile_norm_smooth3D,
norm3D=norm3D,
)
elif normalize:
if img_norm.ndim == 3 or norm3D: # i.e. if YXC, or ZYXC with norm3D=True
for c in range(nchan):
if np.ptp(img_norm[..., c]) > 0.:
img_norm[..., c] = normalize99(
img_norm[..., c],
lower=percentile[0],
upper=percentile[1],
copy=False, downsample=True,
)
cgood[c] = True
else: # i.e. if ZYXC with norm3D=False then per Z-slice
for z in range(img_norm.shape[0]):
for c in range(nchan):
if np.ptp(img_norm[z, ..., c]) > 0.:
img_norm[z, ..., c] = normalize99(
img_norm[z, ..., c],
lower=percentile[0],
upper=percentile[1],
copy=False, downsample=True,
)
cgood[c] = True
if invert:
if lowhigh is not None or tile_norm_blocksize > 0 or normalize:
for c in range(nchan):
if cgood[c]:
img_norm[..., c] = 1 - img_norm[..., c]
else:
error_message = "Cannot invert image without normalization"
transforms_logger.critical(error_message)
raise ValueError(error_message)
# Move channel axis back to the original position
if axis != -1 and axis != img_norm.ndim - 1:
img_norm = np.moveaxis(img_norm, -1, axis)
return img_norm
def resize_safe(img, Ly, Lx, interpolation=cv2.INTER_LINEAR):
"""OpenCV resize function does not support uint32.
This function converts the image to float32 before resizing and then converts it back to uint32. Not safe!
References issue: https://github.com/MouseLand/cellpose/issues/937
Implications:
* Runtime: Runtime increases by 5x-50x due to type casting. However, with resizing being very efficient, this is not
a big issue. A 10,000x10,000 image takes 0.47s instead of 0.016s to cast and resize on 32 cores on GPU.
* Memory: However, memory usage increases. Not tested by how much.
Args:
img (ndarray): Image of size [Ly x Lx].
Ly (int): Desired height of the resized image.
Lx (int): Desired width of the resized image.
interpolation (int, optional): OpenCV interpolation method. Defaults to cv2.INTER_LINEAR.
Returns:
ndarray: Resized image of size [Ly x Lx].
"""
# cast image
cast = img.dtype == np.uint32
if cast:
img = img.astype(np.float32)
# resize
img = cv2.resize(img, (Lx, Ly), interpolation=interpolation)
# cast back
if cast:
img = img.round().astype(np.uint32)
return img
def resize_image(img0, Ly=None, Lx=None, rsz=None, interpolation=cv2.INTER_LINEAR,
no_channels=False):
"""Resize image for computing flows / unresize for computing dynamics.
Args:
img0 (ndarray): Image of size [Y x X x nchan] or [Lz x Y x X x nchan] or [Lz x Y x X].
Ly (int, optional): Desired height of the resized image. Defaults to None.
Lx (int, optional): Desired width of the resized image. Defaults to None.
rsz (float, optional): Resize coefficient(s) for the image. If Ly is None, rsz is used. Defaults to None.
interpolation (int, optional): OpenCV interpolation method. Defaults to cv2.INTER_LINEAR.
no_channels (bool, optional): Flag indicating whether to treat the third dimension as a channel.
Defaults to False.
Returns:
ndarray: Resized image of size [Ly x Lx x nchan] or [Lz x Ly x Lx x nchan].
Raises:
ValueError: If Ly is None and rsz is None.
"""
if Ly is None and rsz is None:
error_message = "must give size to resize to or factor to use for resizing"
transforms_logger.critical(error_message)
raise ValueError(error_message)
if Ly is None:
# determine Ly and Lx using rsz
if not isinstance(rsz, list) and not isinstance(rsz, np.ndarray):
rsz = [rsz, rsz]
if no_channels:
Ly = int(img0.shape[-2] * rsz[-2])
Lx = int(img0.shape[-1] * rsz[-1])
else:
Ly = int(img0.shape[-3] * rsz[-2])
Lx = int(img0.shape[-2] * rsz[-1])
# no_channels useful for z-stacks, so the third dimension is not treated as a channel
# but if this is called for grayscale images, they first become [Ly,Lx,2] so ndim=3 but
if (img0.ndim > 2 and no_channels) or (img0.ndim == 4 and not no_channels):
if Ly == 0 or Lx == 0:
raise ValueError(
"anisotropy too high / low -- not enough pixels to resize to ratio")
for i, img in enumerate(img0):
imgi = resize_safe(img, Ly, Lx, interpolation=interpolation)
if i==0:
if no_channels:
imgs = np.zeros((img0.shape[0], Ly, Lx), imgi.dtype)
else:
imgs = np.zeros((img0.shape[0], Ly, Lx, img0.shape[-1]), imgi.dtype)
imgs[i] = imgi if imgi.ndim > 2 or no_channels else imgi[..., np.newaxis]
else:
imgs = resize_safe(img0, Ly, Lx, interpolation=interpolation)
return imgs
def get_pad_yx(Ly, Lx, div=16, extra=1, min_size=None):
if min_size is None or Ly >= min_size[-2]:
Lpad = int(div * np.ceil(Ly / div) - Ly)
else:
Lpad = min_size[-2] - Ly
ypad1 = extra * div // 2 + Lpad // 2
ypad2 = extra * div // 2 + Lpad - Lpad // 2
if min_size is None or Lx >= min_size[-1]:
Lpad = int(div * np.ceil(Lx / div) - Lx)
else:
Lpad = min_size[-1] - Lx
xpad1 = extra * div // 2 + Lpad // 2
xpad2 = extra * div // 2 + Lpad - Lpad // 2
return ypad1, ypad2, xpad1, xpad2
def pad_image_ND(img0, div=16, extra=1, min_size=None, zpad=False):
"""Pad image for test-time so that its dimensions are a multiple of 16 (2D or 3D).
Args:
img0 (ndarray): Image of size [nchan (x Lz) x Ly x Lx].
div (int, optional): Divisor for padding. Defaults to 16.
extra (int, optional): Extra padding. Defaults to 1.
min_size (tuple, optional): Minimum size of the image. Defaults to None.
Returns:
A tuple containing (I, ysub, xsub) or (I, ysub, xsub, zsub), I is padded image, -sub are ranges of pixels in the padded image corresponding to img0.
"""
Ly, Lx = img0.shape[-2:]
ypad1, ypad2, xpad1, xpad2 = get_pad_yx(Ly, Lx, div=div, extra=extra, min_size=min_size)
if img0.ndim > 3:
if zpad:
Lpad = int(div * np.ceil(img0.shape[-3] / div) - img0.shape[-3])
zpad1 = extra * div // 2 + Lpad // 2
zpad2 = extra * div // 2 + Lpad - Lpad // 2
else:
zpad1, zpad2 = 0, 0
pads = np.array([[0, 0], [zpad1, zpad2], [ypad1, ypad2], [xpad1, xpad2]])
else:
pads = np.array([[0, 0], [ypad1, ypad2], [xpad1, xpad2]])
I = np.pad(img0, pads, mode="constant")
ysub = np.arange(ypad1, ypad1 + Ly)
xsub = np.arange(xpad1, xpad1 + Lx)
if zpad:
zsub = np.arange(zpad1, zpad1 + img0.shape[-3])
return I, ysub, xsub, zsub
else:
return I, ysub, xsub
def random_rotate_and_resize(X, Y=None, scale_range=1., xy=(224, 224), do_3D=False,
zcrop=48, do_flip=True, rotate=True, rescale=None, unet=False,
random_per_image=True):
"""Augmentation by random rotation and resizing.
Args:
X (list of ND-arrays, float): List of image arrays of size [nchan x Ly x Lx] or [Ly x Lx].
Y (list of ND-arrays, float, optional): List of image labels of size [nlabels x Ly x Lx] or [Ly x Lx].
The 1st channel of Y is always nearest-neighbor interpolated (assumed to be masks or 0-1 representation).
If Y.shape[0]==3 and not unet, then the labels are assumed to be [cell probability, Y flow, X flow].
If unet, second channel is dist_to_bound. Defaults to None.
scale_range (float, optional): Range of resizing of images for augmentation.
Images are resized by (1-scale_range/2) + scale_range * np.random.rand(). Defaults to 1.0.
xy (tuple, int, optional): Size of transformed images to return. Defaults to (224,224).
do_flip (bool, optional): Whether or not to flip images horizontally. Defaults to True.
rotate (bool, optional): Whether or not to rotate images. Defaults to True.
rescale (array, float, optional): How much to resize images by before performing augmentations. Defaults to None.
unet (bool, optional): Whether or not to use unet. Defaults to False.
random_per_image (bool, optional): Different random rotate and resize per image. Defaults to True.
Returns:
A tuple containing (imgi, lbl, scale): imgi (ND-array, float): Transformed images in array [nimg x nchan x xy[0] x xy[1]];
lbl (ND-array, float): Transformed labels in array [nimg x nchan x xy[0] x xy[1]];
scale (array, float): Amount each image was resized by.
"""
scale_range = max(0, min(2, float(scale_range)))
nimg = len(X)
if X[0].ndim > 2:
nchan = X[0].shape[0]
else:
nchan = 1
if do_3D and X[0].ndim > 3:
shape = (zcrop, xy[0], xy[1])
else:
shape = (xy[0], xy[1])
imgi = np.zeros((nimg, nchan, *shape), "float32")
lbl = []
if Y is not None:
if Y[0].ndim > 2:
nt = Y[0].shape[0]
else:
nt = 1
lbl = np.zeros((nimg, nt, *shape), np.float32)
scale = np.ones(nimg, np.float32)
for n in range(nimg):
if random_per_image or n == 0:
Ly, Lx = X[n].shape[-2:]
# generate random augmentation parameters
flip = np.random.rand() > .5
theta = np.random.rand() * np.pi * 2 if rotate else 0.
scale[n] = (1 - scale_range / 2) + scale_range * np.random.rand()
if rescale is not None:
scale[n] *= 1. / rescale[n]
dxy = np.maximum(0, np.array([Lx * scale[n] - xy[1],
Ly * scale[n] - xy[0]]))
dxy = (np.random.rand(2,) - .5) * dxy
# create affine transform
cc = np.array([Lx / 2, Ly / 2])
cc1 = cc - np.array([Lx - xy[1], Ly - xy[0]]) / 2 + dxy
pts1 = np.float32([cc, cc + np.array([1, 0]), cc + np.array([0, 1])])
pts2 = np.float32([
cc1,
cc1 + scale[n] * np.array([np.cos(theta), np.sin(theta)]),
cc1 + scale[n] *
np.array([np.cos(np.pi / 2 + theta),
np.sin(np.pi / 2 + theta)])
])
M = cv2.getAffineTransform(pts1, pts2)
img = X[n].copy()
if Y is not None:
labels = Y[n].copy()
if labels.ndim < 3:
labels = labels[np.newaxis, :, :]
if do_3D:
Lz = X[n].shape[-3]
flip_z = np.random.rand() > .5
lz = int(np.round(zcrop / scale[n]))
iz = np.random.randint(0, Lz - lz)
img = img[:,iz:iz + lz,:,:]
if Y is not None:
labels = labels[:,iz:iz + lz,:,:]
if do_flip:
if flip:
img = img[..., ::-1]
if Y is not None:
labels = labels[..., ::-1]
if nt > 1 and not unet:
labels[-1] = -labels[-1]
if do_3D and flip_z:
img = img[:, ::-1]
if Y is not None:
labels = labels[:,::-1]
if nt > 1 and not unet:
labels[-3] = -labels[-3]
for k in range(nchan):
if do_3D:
img0 = np.zeros((lz, xy[0], xy[1]), "float32")
for z in range(lz):
I = cv2.warpAffine(img[k, z], M, (xy[1], xy[0]),
flags=cv2.INTER_LINEAR)
img0[z] = I
if scale[n] != 1.0:
for y in range(imgi.shape[-2]):
imgi[n, k, :, y] = cv2.resize(img0[:, y], (xy[1], zcrop),
interpolation=cv2.INTER_LINEAR)
else:
imgi[n, k] = img0
else:
I = cv2.warpAffine(img[k], M, (xy[1], xy[0]), flags=cv2.INTER_LINEAR)
imgi[n, k] = I
if Y is not None:
for k in range(nt):
flag = cv2.INTER_NEAREST if k == 0 else cv2.INTER_LINEAR
if do_3D:
lbl0 = np.zeros((lz, xy[0], xy[1]), "float32")
for z in range(lz):
I = cv2.warpAffine(labels[k, z], M, (xy[1], xy[0]),
flags=flag)
lbl0[z] = I
if scale[n] != 1.0:
for y in range(lbl.shape[-2]):
lbl[n, k, :, y] = cv2.resize(lbl0[:, y], (xy[1], zcrop),
interpolation=flag)
else:
lbl[n, k] = lbl0
else:
lbl[n, k] = cv2.warpAffine(labels[k], M, (xy[1], xy[0]), flags=flag)
if nt > 1 and not unet:
v1 = lbl[n, -1].copy()
v2 = lbl[n, -2].copy()
lbl[n, -2] = (-v1 * np.sin(-theta) + v2 * np.cos(-theta))
lbl[n, -1] = (v1 * np.cos(-theta) + v2 * np.sin(-theta))
return imgi, lbl, scale
|