import time import os import numpy as np from cellpose import io, transforms, utils, models, dynamics, metrics, resnet_torch from cellpose.transforms import normalize_img from pathlib import Path import torch from torch import nn from tqdm import trange from numba import prange import logging train_logger = logging.getLogger(__name__) def _loss_fn_seg(lbl, y, device): """ Calculates the loss function between true labels lbl and prediction y. Args: lbl (numpy.ndarray): True labels (cellprob, flowsY, flowsX). y (torch.Tensor): Predicted values (flowsY, flowsX, cellprob). device (torch.device): Device on which the tensors are located. Returns: torch.Tensor: Loss value. """ criterion = nn.MSELoss(reduction="mean") criterion2 = nn.BCEWithLogitsLoss(reduction="mean") veci = 5. * torch.from_numpy(lbl[:, 1:]).to(device) loss = criterion(y[:, :2], veci) loss /= 2. loss2 = criterion2(y[:, -1], torch.from_numpy(lbl[:, 0] > 0.5).to(device).float()) loss = loss + loss2 return loss def _get_batch(inds, data=None, labels=None, files=None, labels_files=None, channels=None, channel_axis=None, rgb=False, normalize_params={"normalize": False}): """ Get a batch of images and labels. Args: inds (list): List of indices indicating which images and labels to retrieve. data (list or None): List of image data. If None, images will be loaded from files. labels (list or None): List of label data. If None, labels will be loaded from files. files (list or None): List of file paths for images. labels_files (list or None): List of file paths for labels. channels (list or None): List of channel indices to extract from images. channel_axis (int or None): Axis along which the channels are located. normalize_params (dict): Dictionary of parameters for image normalization (will be faster, if loading from files to pre-normalize). Returns: tuple: A tuple containing two lists: the batch of images and the batch of labels. """ if data is None: lbls = None imgs = [io.imread(files[i]) for i in inds] imgs = _reshape_norm(imgs, channels=channels, channel_axis=channel_axis, rgb=rgb, normalize_params=normalize_params) if labels_files is not None: lbls = [io.imread(labels_files[i])[1:] for i in inds] else: imgs = [data[i] for i in inds] lbls = [labels[i][1:] for i in inds] return imgs, lbls def pad_to_rgb(img): if img.ndim == 2 or np.ptp(img[1]) < 1e-3: if img.ndim == 2: img = img[np.newaxis, :, :] img = np.tile(img[:1], (3, 1, 1)) elif img.shape[0] < 3: nc, Ly, Lx = img.shape # randomly flip channels if np.random.rand() > 0.5: img = img[::-1] # randomly insert blank channel ic = np.random.randint(3) img = np.insert(img, ic, np.zeros((3 - nc, Ly, Lx), dtype=img.dtype), axis=0) return img def convert_to_rgb(img): if img.ndim == 2: img = img[np.newaxis, :, :] img = np.tile(img, (3, 1, 1)) elif img.shape[0] < 3: img = img.mean(axis=0, keepdims=True) img = transforms.normalize99(img) img = np.tile(img, (3, 1, 1)) return img def _reshape_norm(data, channels=None, channel_axis=None, rgb=False, normalize_params={"normalize": False}): """ Reshapes and normalizes the input data. Args: data (list): List of input data. channels (int or list, optional): Number of channels or list of channel indices to keep. Defaults to None. channel_axis (int, optional): Axis along which the channels are located. Defaults to None. normalize_params (dict, optional): Dictionary of normalization parameters. Defaults to {"normalize": False}. Returns: list: List of reshaped and normalized data. """ if channels is not None or channel_axis is not None: data = [ transforms.convert_image(td, channels=channels, channel_axis=channel_axis) for td in data ] data = [td.transpose(2, 0, 1) for td in data] if normalize_params["normalize"]: data = [ transforms.normalize_img(td, normalize=normalize_params, axis=0) for td in data ] if rgb: data = [pad_to_rgb(td) for td in data] return data def _reshape_norm_save(files, channels=None, channel_axis=None, normalize_params={"normalize": False}): """ not currently used -- normalization happening on each batch if not load_files """ files_new = [] for f in trange(files): td = io.imread(f) if channels is not None: td = transforms.convert_image(td, channels=channels, channel_axis=channel_axis) td = td.transpose(2, 0, 1) if normalize_params["normalize"]: td = transforms.normalize_img(td, normalize=normalize_params, axis=0) fnew = os.path.splitext(str(f))[0] + "_cpnorm.tif" io.imsave(fnew, td) files_new.append(fnew) return files_new # else: # train_files = reshape_norm_save(train_files, channels=channels, # channel_axis=channel_axis, normalize_params=normalize_params) # elif test_files is not None: # test_files = reshape_norm_save(test_files, channels=channels, # channel_axis=channel_axis, normalize_params=normalize_params) def _process_train_test(train_data=None, train_labels=None, train_files=None, train_labels_files=None, train_probs=None, test_data=None, test_labels=None, test_files=None, test_labels_files=None, test_probs=None, load_files=True, min_train_masks=5, compute_flows=False, channels=None, channel_axis=None, rgb=False, normalize_params={"normalize": False }, device=None): """ Process train and test data. Args: train_data (list or None): List of training data arrays. train_labels (list or None): List of training label arrays. train_files (list or None): List of training file paths. train_labels_files (list or None): List of training label file paths. train_probs (ndarray or None): Array of training probabilities. test_data (list or None): List of test data arrays. test_labels (list or None): List of test label arrays. test_files (list or None): List of test file paths. test_labels_files (list or None): List of test label file paths. test_probs (ndarray or None): Array of test probabilities. load_files (bool): Whether to load data from files. min_train_masks (int): Minimum number of masks required for training images. compute_flows (bool): Whether to compute flows. channels (list or None): List of channel indices to use. channel_axis (int or None): Axis of channel dimension. rgb (bool): Convert training/testing images to RGB. normalize_params (dict): Dictionary of normalization parameters. device (torch.device): Device to use for computation. Returns: tuple: A tuple containing the processed train and test data and sampling probabilities and diameters. """ if device == None: device = torch.device('cuda') if torch.cuda.is_available() else torch.device('mps') if torch.backends.mps.is_available() else None if train_data is not None and train_labels is not None: # if data is loaded nimg = len(train_data) nimg_test = len(test_data) if test_data is not None else None else: # otherwise use files nimg = len(train_files) if train_labels_files is None: train_labels_files = [ os.path.splitext(str(tf))[0] + "_flows.tif" for tf in train_files ] train_labels_files = [tf for tf in train_labels_files if os.path.exists(tf)] if (test_data is not None or test_files is not None) and test_labels_files is None: test_labels_files = [ os.path.splitext(str(tf))[0] + "_flows.tif" for tf in test_files ] test_labels_files = [tf for tf in test_labels_files if os.path.exists(tf)] if not load_files: train_logger.info(">>> using files instead of loading dataset") else: # load all images train_logger.info(">>> loading images and labels") train_data = [io.imread(train_files[i]) for i in trange(nimg)] train_labels = [io.imread(train_labels_files[i]) for i in trange(nimg)] nimg_test = len(test_files) if test_files is not None else None if load_files and nimg_test: test_data = [io.imread(test_files[i]) for i in trange(nimg_test)] test_labels = [io.imread(test_labels_files[i]) for i in trange(nimg_test)] ### check that arrays are correct size if ((train_labels is not None and nimg != len(train_labels)) or (train_labels_files is not None and nimg != len(train_labels_files))): error_message = "train data and labels not same length" train_logger.critical(error_message) raise ValueError(error_message) if ((test_labels is not None and nimg_test != len(test_labels)) or (test_labels_files is not None and nimg_test != len(test_labels_files))): train_logger.warning("test data and labels not same length, not using") test_data, test_files = None, None if train_labels is not None: if train_labels[0].ndim < 2 or train_data[0].ndim < 2: error_message = "training data or labels are not at least two-dimensional" train_logger.critical(error_message) raise ValueError(error_message) if train_data[0].ndim > 3: error_message = "training data is more than three-dimensional (should be 2D or 3D array)" train_logger.critical(error_message) raise ValueError(error_message) ### check that flows are computed if train_labels is not None: train_labels = dynamics.labels_to_flows(train_labels, files=train_files, device=device) if test_labels is not None: test_labels = dynamics.labels_to_flows(test_labels, files=test_files, device=device) elif compute_flows: for k in trange(nimg): tl = dynamics.labels_to_flows(io.imread(train_labels_files), files=train_files, device=device) if test_files is not None: for k in trange(nimg_test): tl = dynamics.labels_to_flows(io.imread(test_labels_files), files=test_files, device=device) ### compute diameters nmasks = np.zeros(nimg) diam_train = np.zeros(nimg) train_logger.info(">>> computing diameters") for k in trange(nimg): tl = (train_labels[k][0] if train_labels is not None else io.imread(train_labels_files[k])[0]) diam_train[k], dall = utils.diameters(tl) nmasks[k] = len(dall) diam_train[diam_train < 5] = 5. if test_data is not None: diam_test = np.array( [utils.diameters(test_labels[k][0])[0] for k in trange(len(test_labels))]) diam_test[diam_test < 5] = 5. elif test_labels_files is not None: diam_test = np.array([ utils.diameters(io.imread(test_labels_files[k])[0])[0] for k in trange(len(test_labels_files)) ]) diam_test[diam_test < 5] = 5. else: diam_test = None ### check to remove training images with too few masks if min_train_masks > 0: nremove = (nmasks < min_train_masks).sum() if nremove > 0: train_logger.warning( f"{nremove} train images with number of masks less than min_train_masks ({min_train_masks}), removing from train set" ) ikeep = np.nonzero(nmasks >= min_train_masks)[0] if train_data is not None: train_data = [train_data[i] for i in ikeep] train_labels = [train_labels[i] for i in ikeep] if train_files is not None: train_files = [train_files[i] for i in ikeep] if train_labels_files is not None: train_labels_files = [train_labels_files[i] for i in ikeep] if train_probs is not None: train_probs = train_probs[ikeep] diam_train = diam_train[ikeep] nimg = len(train_data) ### normalize probabilities train_probs = 1. / nimg * np.ones(nimg, "float64") if train_probs is None else train_probs train_probs /= train_probs.sum() if test_files is not None or test_data is not None: test_probs = 1. / nimg_test * np.ones( nimg_test, "float64") if test_probs is None else test_probs test_probs /= test_probs.sum() ### reshape and normalize train / test data normed = False if channels is not None or normalize_params["normalize"]: if channels: train_logger.info(f">>> using channels {channels}") if normalize_params["normalize"]: train_logger.info(f">>> normalizing {normalize_params}") if train_data is not None: train_data = _reshape_norm(train_data, channels=channels, channel_axis=channel_axis, rgb=rgb, normalize_params=normalize_params) normed = True if test_data is not None: test_data = _reshape_norm(test_data, channels=channels, channel_axis=channel_axis, rgb=rgb, normalize_params=normalize_params) return (train_data, train_labels, train_files, train_labels_files, train_probs, diam_train, test_data, test_labels, test_files, test_labels_files, test_probs, diam_test, normed) def train_seg(net, train_data=None, train_labels=None, train_files=None, train_labels_files=None, train_probs=None, test_data=None, test_labels=None, test_files=None, test_labels_files=None, test_probs=None, load_files=True, batch_size=8, learning_rate=0.005, n_epochs=2000, weight_decay=1e-5, momentum=0.9, SGD=False, channels=None, channel_axis=None, rgb=False, normalize=True, compute_flows=False, save_path=None, save_every=100, save_each=False, nimg_per_epoch=None, nimg_test_per_epoch=None, rescale=True, scale_range=None, bsize=224, min_train_masks=5, model_name=None): """ Train the network with images for segmentation. Args: net (object): The network model to train. train_data (List[np.ndarray], optional): List of arrays (2D or 3D) - images for training. Defaults to None. train_labels (List[np.ndarray], optional): List of arrays (2D or 3D) - labels for train_data, where 0=no masks; 1,2,...=mask labels. Defaults to None. train_files (List[str], optional): List of strings - file names for images in train_data (to save flows for future runs). Defaults to None. train_labels_files (list or None): List of training label file paths. Defaults to None. train_probs (List[float], optional): List of floats - probabilities for each image to be selected during training. Defaults to None. test_data (List[np.ndarray], optional): List of arrays (2D or 3D) - images for testing. Defaults to None. test_labels (List[np.ndarray], optional): List of arrays (2D or 3D) - labels for test_data, where 0=no masks; 1,2,...=mask labels. Defaults to None. test_files (List[str], optional): List of strings - file names for images in test_data (to save flows for future runs). Defaults to None. test_labels_files (list or None): List of test label file paths. Defaults to None. test_probs (List[float], optional): List of floats - probabilities for each image to be selected during testing. Defaults to None. load_files (bool, optional): Boolean - whether to load images and labels from files. Defaults to True. batch_size (int, optional): Integer - number of patches to run simultaneously on the GPU. Defaults to 8. learning_rate (float or List[float], optional): Float or list/np.ndarray - learning rate for training. Defaults to 0.005. n_epochs (int, optional): Integer - number of times to go through the whole training set during training. Defaults to 2000. weight_decay (float, optional): Float - weight decay for the optimizer. Defaults to 1e-5. momentum (float, optional): Float - momentum for the optimizer. Defaults to 0.9. SGD (bool, optional): Boolean - whether to use SGD as optimization instead of RAdam. Defaults to False. channels (List[int], optional): List of ints - channels to use for training. Defaults to None. channel_axis (int, optional): Integer - axis of the channel dimension in the input data. Defaults to None. normalize (bool or dict, optional): Boolean or dictionary - whether to normalize the data. Defaults to True. compute_flows (bool, optional): Boolean - whether to compute flows during training. Defaults to False. save_path (str, optional): String - where to save the trained model. Defaults to None. save_every (int, optional): Integer - save the network every [save_every] epochs. Defaults to 100. save_each (bool, optional): Boolean - save the network to a new filename at every [save_each] epoch. Defaults to False. nimg_per_epoch (int, optional): Integer - minimum number of images to train on per epoch. Defaults to None. nimg_test_per_epoch (int, optional): Integer - minimum number of images to test on per epoch. Defaults to None. rescale (bool, optional): Boolean - whether or not to rescale images during training. Defaults to True. min_train_masks (int, optional): Integer - minimum number of masks an image must have to use in the training set. Defaults to 5. model_name (str, optional): String - name of the network. Defaults to None. Returns: tuple: A tuple containing the path to the saved model weights, training losses, and test losses. """ device = net.device scale_range0 = 0.5 if rescale else 1.0 scale_range = scale_range if scale_range is not None else scale_range0 if isinstance(normalize, dict): normalize_params = {**models.normalize_default, **normalize} elif not isinstance(normalize, bool): raise ValueError("normalize parameter must be a bool or a dict") else: normalize_params = models.normalize_default normalize_params["normalize"] = normalize out = _process_train_test(train_data=train_data, train_labels=train_labels, train_files=train_files, train_labels_files=train_labels_files, train_probs=train_probs, test_data=test_data, test_labels=test_labels, test_files=test_files, test_labels_files=test_labels_files, test_probs=test_probs, load_files=load_files, min_train_masks=min_train_masks, compute_flows=compute_flows, channels=channels, channel_axis=channel_axis, rgb=rgb, normalize_params=normalize_params, device=net.device) (train_data, train_labels, train_files, train_labels_files, train_probs, diam_train, test_data, test_labels, test_files, test_labels_files, test_probs, diam_test, normed) = out # already normalized, do not normalize during training if normed: kwargs = {} else: kwargs = { "normalize_params": normalize_params, "channels": channels, "channel_axis": channel_axis, "rgb": rgb } net.diam_labels.data = torch.Tensor([diam_train.mean()]).to(device) nimg = len(train_data) if train_data is not None else len(train_files) nimg_test = len(test_data) if test_data is not None else None nimg_test = len(test_files) if test_files is not None else nimg_test nimg_per_epoch = nimg if nimg_per_epoch is None else nimg_per_epoch nimg_test_per_epoch = nimg_test if nimg_test_per_epoch is None else nimg_test_per_epoch # learning rate schedule LR = np.linspace(0, learning_rate, 10) LR = np.append(LR, learning_rate * np.ones(max(0, n_epochs - 10))) if n_epochs > 300: LR = LR[:-100] for i in range(10): LR = np.append(LR, LR[-1] / 2 * np.ones(10)) elif n_epochs > 100: LR = LR[:-50] for i in range(10): LR = np.append(LR, LR[-1] / 2 * np.ones(5)) train_logger.info(f">>> n_epochs={n_epochs}, n_train={nimg}, n_test={nimg_test}") if not SGD: train_logger.info( f">>> AdamW, learning_rate={learning_rate:0.5f}, weight_decay={weight_decay:0.5f}" ) optimizer = torch.optim.AdamW(net.parameters(), lr=learning_rate, weight_decay=weight_decay) else: train_logger.info( f">>> SGD, learning_rate={learning_rate:0.5f}, weight_decay={weight_decay:0.5f}, momentum={momentum:0.3f}" ) optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate, weight_decay=weight_decay, momentum=momentum) t0 = time.time() model_name = f"cellpose_{t0}" if model_name is None else model_name save_path = Path.cwd() if save_path is None else Path(save_path) filename = save_path / "models" / model_name (save_path / "models").mkdir(exist_ok=True) train_logger.info(f">>> saving model to {filename}") lavg, nsum = 0, 0 train_losses, test_losses = np.zeros(n_epochs), np.zeros(n_epochs) for iepoch in range(n_epochs): np.random.seed(iepoch) if nimg != nimg_per_epoch: # choose random images for epoch with probability train_probs rperm = np.random.choice(np.arange(0, nimg), size=(nimg_per_epoch,), p=train_probs) else: # otherwise use all images rperm = np.random.permutation(np.arange(0, nimg)) for param_group in optimizer.param_groups: param_group["lr"] = LR[iepoch] # set learning rate net.train() for k in range(0, nimg_per_epoch, batch_size): kend = min(k + batch_size, nimg_per_epoch) inds = rperm[k:kend] imgs, lbls = _get_batch(inds, data=train_data, labels=train_labels, files=train_files, labels_files=train_labels_files, **kwargs) diams = np.array([diam_train[i] for i in inds]) rsc = diams / net.diam_mean.item() if rescale else np.ones( len(diams), "float32") # augmentations imgi, lbl = transforms.random_rotate_and_resize(imgs, Y=lbls, rescale=rsc, scale_range=scale_range, xy=(bsize, bsize))[:2] # network and loss optimization X = torch.from_numpy(imgi).to(device) y = net(X)[0] loss = _loss_fn_seg(lbl, y, device) optimizer.zero_grad() loss.backward() optimizer.step() train_loss = loss.item() train_loss *= len(imgi) # keep track of average training loss across epochs lavg += train_loss nsum += len(imgi) # per epoch training loss train_losses[iepoch] += train_loss train_losses[iepoch] /= nimg_per_epoch if iepoch == 5 or iepoch % 10 == 0: lavgt = 0. if test_data is not None or test_files is not None: np.random.seed(42) if nimg_test != nimg_test_per_epoch: rperm = np.random.choice(np.arange(0, nimg_test), size=(nimg_test_per_epoch,), p=test_probs) else: rperm = np.random.permutation(np.arange(0, nimg_test)) for ibatch in range(0, len(rperm), batch_size): with torch.no_grad(): net.eval() inds = rperm[ibatch:ibatch + batch_size] imgs, lbls = _get_batch(inds, data=test_data, labels=test_labels, files=test_files, labels_files=test_labels_files, **kwargs) diams = np.array([diam_test[i] for i in inds]) rsc = diams / net.diam_mean.item() if rescale else np.ones( len(diams), "float32") imgi, lbl = transforms.random_rotate_and_resize( imgs, Y=lbls, rescale=rsc, scale_range=scale_range, xy=(bsize, bsize))[:2] X = torch.from_numpy(imgi).to(device) y = net(X)[0] loss = _loss_fn_seg(lbl, y, device) test_loss = loss.item() test_loss *= len(imgi) lavgt += test_loss lavgt /= len(rperm) test_losses[iepoch] = lavgt lavg /= nsum train_logger.info( f"{iepoch}, train_loss={lavg:.4f}, test_loss={lavgt:.4f}, LR={LR[iepoch]:.6f}, time {time.time()-t0:.2f}s" ) lavg, nsum = 0, 0 if iepoch == n_epochs - 1 or (iepoch % save_every == 0 and iepoch != 0): if save_each and iepoch != n_epochs - 1: #separate files as model progresses filename0 = str(filename) + f"_epoch_{iepoch:04d}" else: filename0 = filename train_logger.info(f"saving network parameters to {filename0}") net.save_model(filename0) net.save_model(filename) return filename, train_losses, test_losses def train_size(net, pretrained_model, train_data=None, train_labels=None, train_files=None, train_labels_files=None, train_probs=None, test_data=None, test_labels=None, test_files=None, test_labels_files=None, test_probs=None, load_files=True, min_train_masks=5, channels=None, channel_axis=None, rgb=False, normalize=True, nimg_per_epoch=None, nimg_test_per_epoch=None, batch_size=64, scale_range=1.0, bsize=512, l2_regularization=1.0, n_epochs=10): """Train the size model. Args: net (object): The neural network model. pretrained_model (str): The path to the pretrained model. train_data (numpy.ndarray, optional): The training data. Defaults to None. train_labels (numpy.ndarray, optional): The training labels. Defaults to None. train_files (list, optional): The training file paths. Defaults to None. train_labels_files (list, optional): The training label file paths. Defaults to None. train_probs (numpy.ndarray, optional): The training probabilities. Defaults to None. test_data (numpy.ndarray, optional): The test data. Defaults to None. test_labels (numpy.ndarray, optional): The test labels. Defaults to None. test_files (list, optional): The test file paths. Defaults to None. test_labels_files (list, optional): The test label file paths. Defaults to None. test_probs (numpy.ndarray, optional): The test probabilities. Defaults to None. load_files (bool, optional): Whether to load files. Defaults to True. min_train_masks (int, optional): The minimum number of training masks. Defaults to 5. channels (list, optional): The channels. Defaults to None. channel_axis (int, optional): The channel axis. Defaults to None. normalize (bool or dict, optional): Whether to normalize the data. Defaults to True. nimg_per_epoch (int, optional): The number of images per epoch. Defaults to None. nimg_test_per_epoch (int, optional): The number of test images per epoch. Defaults to None. batch_size (int, optional): The batch size. Defaults to 64. l2_regularization (float, optional): The L2 regularization factor. Defaults to 1.0. n_epochs (int, optional): The number of epochs. Defaults to 10. Returns: dict: The trained size model parameters. """ if isinstance(normalize, dict): normalize_params = {**models.normalize_default, **normalize} elif not isinstance(normalize, bool): raise ValueError("normalize parameter must be a bool or a dict") else: normalize_params = models.normalize_default normalize_params["normalize"] = normalize out = _process_train_test( train_data=train_data, train_labels=train_labels, train_files=train_files, train_labels_files=train_labels_files, train_probs=train_probs, test_data=test_data, test_labels=test_labels, test_files=test_files, test_labels_files=test_labels_files, test_probs=test_probs, load_files=load_files, min_train_masks=min_train_masks, compute_flows=False, channels=channels, channel_axis=channel_axis, normalize_params=normalize_params, device=net.device) (train_data, train_labels, train_files, train_labels_files, train_probs, diam_train, test_data, test_labels, test_files, test_labels_files, test_probs, diam_test, normed) = out # already normalized, do not normalize during training if normed: kwargs = {} else: kwargs = { "normalize_params": normalize_params, "channels": channels, "channel_axis": channel_axis, "rgb": rgb } nimg = len(train_data) if train_data is not None else len(train_files) nimg_test = len(test_data) if test_data is not None else None nimg_test = len(test_files) if test_files is not None else nimg_test nimg_per_epoch = nimg if nimg_per_epoch is None else nimg_per_epoch nimg_test_per_epoch = nimg_test if nimg_test_per_epoch is None else nimg_test_per_epoch diam_mean = net.diam_mean.item() device = net.device net.eval() styles = np.zeros((n_epochs * nimg_per_epoch, 256), np.float32) diams = np.zeros((n_epochs * nimg_per_epoch,), np.float32) tic = time.time() for iepoch in range(n_epochs): np.random.seed(iepoch) if nimg != nimg_per_epoch: rperm = np.random.choice(np.arange(0, nimg), size=(nimg_per_epoch,), p=train_probs) else: rperm = np.random.permutation(np.arange(0, nimg)) for ibatch in range(0, nimg_per_epoch, batch_size): inds_batch = np.arange(ibatch, min(nimg_per_epoch, ibatch + batch_size)) inds = rperm[inds_batch] imgs, lbls = _get_batch(inds, data=train_data, labels=train_labels, files=train_files, **kwargs) diami = diam_train[inds].copy() imgi, lbl, scale = transforms.random_rotate_and_resize( imgs, scale_range=scale_range, xy=(bsize, bsize)) imgi = torch.from_numpy(imgi).to(device) with torch.no_grad(): feat = net(imgi)[1] indsi = inds_batch + nimg_per_epoch * iepoch styles[indsi] = feat.cpu().numpy() diams[indsi] = np.log(diami) - np.log(diam_mean) + np.log(scale) del feat train_logger.info("ran %d epochs in %0.3f sec" % (iepoch + 1, time.time() - tic)) l2_regularization = 1. # create model smean = styles.copy().mean(axis=0) X = ((styles.copy() - smean).T).copy() ymean = diams.copy().mean() y = diams.copy() - ymean A = np.linalg.solve(X @ X.T + l2_regularization * np.eye(X.shape[0]), X @ y) ypred = A @ X train_logger.info("train correlation: %0.4f" % np.corrcoef(y, ypred)[0, 1]) if nimg_test: np.random.seed(0) styles_test = np.zeros((nimg_test_per_epoch, 256), np.float32) diams_test = np.zeros((nimg_test_per_epoch,), np.float32) diams_test0 = np.zeros((nimg_test_per_epoch,), np.float32) if nimg_test != nimg_test_per_epoch: rperm = np.random.choice(np.arange(0, nimg_test), size=(nimg_test_per_epoch,), p=test_probs) else: rperm = np.random.permutation(np.arange(0, nimg_test)) for ibatch in range(0, nimg_test_per_epoch, batch_size): inds_batch = np.arange(ibatch, min(nimg_test_per_epoch, ibatch + batch_size)) inds = rperm[inds_batch] imgs, lbls = _get_batch(inds, data=test_data, labels=test_labels, files=test_files, labels_files=test_labels_files, **kwargs) diami = diam_test[inds].copy() imgi, lbl, scale = transforms.random_rotate_and_resize( imgs, Y=lbls, scale_range=scale_range, xy=(bsize, bsize)) imgi = torch.from_numpy(imgi).to(device) diamt = np.array([utils.diameters(lbl0[0])[0] for lbl0 in lbl]) diamt = np.maximum(5., diamt) with torch.no_grad(): feat = net(imgi)[1] styles_test[inds_batch] = feat.cpu().numpy() diams_test[inds_batch] = np.log(diami) - np.log(diam_mean) + np.log(scale) diams_test0[inds_batch] = diamt diam_test_pred = np.exp(A @ (styles_test - smean).T + np.log(diam_mean) + ymean) diam_test_pred = np.maximum(5., diam_test_pred) train_logger.info("test correlation: %0.4f" % np.corrcoef(diams_test0, diam_test_pred)[0, 1]) pretrained_size = str(pretrained_model) + "_size.npy" params = {"A": A, "smean": smean, "diam_mean": diam_mean, "ymean": ymean} np.save(pretrained_size, params) train_logger.info("model saved to " + pretrained_size) return params