Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
from ArticulatoryTextFrontend import ArticulatoryTextFrontend
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def visualize_one_hot_encoded_sequence(tensor, sentence, col_labels, cmap='BuGn'):
|
| 12 |
+
"""
|
| 13 |
+
Visualize a 2D one-hot encoded tensor as a heatmap.
|
| 14 |
+
"""
|
| 15 |
+
tensor = torch.clamp(tensor, min=0, max=1).transpose(0, 1).cpu().numpy()
|
| 16 |
+
if tensor.ndim != 2:
|
| 17 |
+
raise ValueError("Input tensor must be a 2D array")
|
| 18 |
+
|
| 19 |
+
# Check the size of labels matches the tensor dimensions
|
| 20 |
+
row_labels = ["stressed", "very-high-tone", "high-tone", "mid-tone", "low-tone", "very-low-tone", "rising-tone", "falling-tone", "peaking-tone", "dipping-tone", "lengthened", "half-length", "shortened", "consonant", "vowel", "phoneme", "silence", "end of sentence", "questionmark", "exclamationmark", "fullstop", "word-boundary", "dental", "postalveolar",
|
| 21 |
+
"velar", "palatal", "glottal", "uvular", "labiodental", "labial-velar", "alveolar", "bilabial", "alveolopalatal", "retroflex", "pharyngal", "epiglottal", "central", "back", "front_central", "front", "central_back", "mid", "close-mid", "close", "open-mid", "close_close-mid", "open-mid_open", "open", "rounded", "unrounded", "plosive",
|
| 22 |
+
"nasal", "approximant", "trill", "flap", "fricative", "lateral-approximant", "implosive", "vibrant", "click", "ejective", "aspirated", "unvoiced", "voiced"]
|
| 23 |
+
|
| 24 |
+
if row_labels and len(row_labels) != tensor.shape[0]:
|
| 25 |
+
raise ValueError("Number of row labels must match the number of rows in the tensor")
|
| 26 |
+
if col_labels and len(col_labels) != tensor.shape[1]:
|
| 27 |
+
raise ValueError("Number of column labels must match the number of columns in the tensor")
|
| 28 |
+
|
| 29 |
+
fig, ax = plt.subplots(figsize=(16, 16))
|
| 30 |
+
|
| 31 |
+
# Create the heatmap
|
| 32 |
+
ax.imshow(tensor, cmap=cmap, aspect='auto')
|
| 33 |
+
|
| 34 |
+
# Add labels
|
| 35 |
+
if row_labels:
|
| 36 |
+
ax.set_yticks(np.arange(tensor.shape[0]), row_labels)
|
| 37 |
+
if col_labels:
|
| 38 |
+
ax.set_xticks(np.arange(tensor.shape[1]), col_labels, rotation=0)
|
| 39 |
+
|
| 40 |
+
ax.grid(False)
|
| 41 |
+
ax.set_xlabel('Phones')
|
| 42 |
+
ax.set_ylabel('Features')
|
| 43 |
+
|
| 44 |
+
# Display the heatmap
|
| 45 |
+
ax.set_title(f"»{sentence}«")
|
| 46 |
+
return fig
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def vis_wrapper(sentence, language):
|
| 50 |
+
tf = ArticulatoryTextFrontend(language=language.split(" ")[-1].split("(")[1].split(")")[0])
|
| 51 |
+
features = tf.string_to_tensor(sentence)
|
| 52 |
+
phones = tf.get_phone_string(sentence)
|
| 53 |
+
|
| 54 |
+
return visualize_one_hot_encoded_sequence(tensor=features, sentence=sentence, col_labels=phones)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def load_json_from_path(path):
|
| 58 |
+
with open(path, "r", encoding="utf8") as f:
|
| 59 |
+
obj = json.loads(f.read())
|
| 60 |
+
|
| 61 |
+
return obj
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
iso_to_name = load_json_from_path("iso_to_fullname.json")
|
| 65 |
+
text_selection = [f"{iso_to_name[iso_code]} ({iso_code})" for iso_code in iso_to_name]
|
| 66 |
+
iface = gr.Interface(fn=vis_wrapper,
|
| 67 |
+
inputs=[gr.Textbox(lines=2,
|
| 68 |
+
placeholder="write the sentence you want to visualize here...",
|
| 69 |
+
value="What I cannot create, I do not understand.",
|
| 70 |
+
label="Text input"),
|
| 71 |
+
gr.Dropdown(text_selection,
|
| 72 |
+
type="value",
|
| 73 |
+
value='English (eng)',
|
| 74 |
+
label="Select the Language of the Text (type on your keyboard to find it quickly)")],
|
| 75 |
+
outputs=[gr.Plot()],
|
| 76 |
+
allow_flagging="never",
|
| 77 |
+
live=False,
|
| 78 |
+
fill_width=True)
|
| 79 |
+
iface.launch()
|