Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,817 Bytes
dc155d4 1e52d76 dc155d4 84712e3 e75a609 1e52d76 e75a609 8194c26 b4f0e9d f6fc4fb ab273c0 76bc6e5 ab273c0 5ab0a82 bd1db85 dc155d4 3bccf96 dc155d4 76bc6e5 68ab12f 76bc6e5 dc155d4 f10a213 dc155d4 e75a609 68ab12f e75a609 0a151ae fe6a246 bc251ce fe6a246 bc251ce e75a609 68ab12f e75a609 5828a5c bc251ce 069d945 bc251ce 7e8382c fe6a246 bc251ce 7e8382c bc251ce e75a609 84712e3 e75a609 bd1db85 e75a609 dc155d4 76bc6e5 dc155d4 76bc6e5 bd1db85 76bc6e5 bd1db85 76bc6e5 bd1db85 76bc6e5 bd1db85 dc155d4 e75a609 dc155d4 4887278 dc155d4 6fc9eeb dc155d4 aaead35 1d6576a e75a609 1d6576a e75a609 1d6576a 0d00a08 dc155d4 76bc6e5 dc155d4 76bc6e5 dc155d4 a25b815 dc155d4 76bc6e5 a25b815 dc155d4 a87b08e dc155d4 76bc6e5 dc155d4 76bc6e5 dc155d4 76bc6e5 dc155d4 e75a609 dc155d4 76bc6e5 dc155d4 76bc6e5 dc155d4 39627f8 dc155d4 b2e59c2 760bf10 6e3d0d9 760bf10 b2e59c2 4ed9c34 b2e59c2 7cf0e86 b2e59c2 7cf0e86 f6fc4fb dc155d4 a25b815 76bc6e5 dc155d4 bd1db85 dc155d4 76bc6e5 dc155d4 eb522e8 ed7a43b bb98bd0 dc155d4 6e3d0d9 dc155d4 1b6e0ed dc155d4 76bc6e5 dc155d4 7cf0e86 dc155d4 76bc6e5 4887278 dc155d4 fb351d8 4887278 fb351d8 59fffeb 4887278 fb351d8 dc155d4 7cf0e86 dc155d4 b2e59c2 dc155d4 ab273c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
import spaces
import torch
from transformers import (
AutoTokenizer,
AutoImageProcessor,
T5EncoderModel,
)
from diffusers import (
WanImageToVideoPipeline,
WanTransformer3DModel,
AutoencoderKL,
EulerDiscreteScheduler,
)
import gradio as gr
import tempfile
import numpy as np
from PIL import Image
import random
import gc
from diffusers.utils.export_utils import export_to_video
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file as safetensors_load
from torchao.quantization import quantize_
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig
from torchao.quantization import Int8WeightOnlyConfig
import aoti
import subprocess
import ffmpeg
import os
MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
MAX_DIM = 768
MIN_DIM = 448
SQUARE_DIM = 576
MULTIPLE_OF = 16
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 80
MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS,1)
MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS,1)
pipe = WanImageToVideoPipeline.from_pretrained(MODEL_ID,
transformer=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
subfolder='transformer',
torch_dtype=torch.bfloat16,
device_map='cuda',
),
transformer_2=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
subfolder='transformer_2',
torch_dtype=torch.bfloat16,
device_map='cuda',
),
torch_dtype=torch.bfloat16,
).to('cuda')
pipe.load_lora_weights(
"Kijai/WanVideo_comfy",
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
adapter_name="lightx2v"
)
kwargs_lora_h = {}
kwargs_lora_h["load_into_transformer"] = True
pipe.load_lora_weights(
"GiorgioV/LoRA_for_WAN_22",
weight_name="I2V_14B_HIGH.safetensors",
adapter_name="lora_h", **kwargs_lora_h
)
kwargs_lora_gh = {}
kwargs_lora_gh["load_into_transformer"] = True
pipe.load_lora_weights(
"GiorgioV/LoRA_for_WAN_22",
weight_name="Wan2.2 - I2V - GH - HIGH 14B.safetensors",
adapter_name="lora_gh", **kwargs_lora_gh
)
kwargs_lora = {}
kwargs_lora["load_into_transformer_2"] = True
pipe.load_lora_weights(
"Kijai/WanVideo_comfy",
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
adapter_name="lightx2v_2", **kwargs_lora
)
kwargs_lora_l = {}
kwargs_lora_l["load_into_transformer_2"] = True
pipe.load_lora_weights(
"GiorgioV/LoRA_for_WAN_22",
weight_name="I2V_14B_LOW.safetensors",
adapter_name="lora_l", **kwargs_lora_l
)
kwargs_lora_gl = {}
kwargs_lora_gl["load_into_transformer_2"] = True
pipe.load_lora_weights(
"GiorgioV/LoRA_for_WAN_22",
weight_name="Wan2.2 - I2V - GH - LOW 14B.safetensors",
adapter_name="lora_gl", **kwargs_lora_gl
)
pipe.set_adapters(["lightx2v", "lora_h", "lora_gh", "lightx2v_2", "lora_l", "lora_gl"], adapter_weights=[1., 1., 1., 1., 1., 1.])
pipe.fuse_lora(adapter_names=["lightx2v"], lora_scale=3., components=["transformer"])
pipe.fuse_lora(adapter_names=["lora_h"], lora_scale=0.3, components=["transformer"])
pipe.fuse_lora(adapter_names=["lora_gh"], lora_scale=0.3, components=["transformer"])
pipe.fuse_lora(adapter_names=["lightx2v_2"], lora_scale=1., components=["transformer_2"])
pipe.fuse_lora(adapter_names=["lora_l"], lora_scale=1., components=["transformer_2"])
pipe.fuse_lora(adapter_names=["lora_gl"], lora_scale=0.8, components=["transformer_2"])
pipe.unload_lora_weights()
quantize_(pipe.text_encoder, Int8WeightOnlyConfig())
quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig())
quantize_(pipe.transformer_2, Float8DynamicActivationFloat8WeightConfig())
aoti.aoti_blocks_load(pipe.transformer, 'zerogpu-aoti/Wan2', variant='fp8da')
aoti.aoti_blocks_load(pipe.transformer_2, 'zerogpu-aoti/Wan2', variant='fp8da')
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走"
def resize_image(image: Image.Image) -> Image.Image:
"""
Resizes an image to fit within the model's constraints, preserving aspect ratio as much as possible.
"""
width, height = image.size
# Handle square case
if width == height:
return image.resize((SQUARE_DIM, SQUARE_DIM), Image.LANCZOS)
aspect_ratio = width / height
MAX_ASPECT_RATIO = MAX_DIM / MIN_DIM
MIN_ASPECT_RATIO = MIN_DIM / MAX_DIM
image_to_resize = image
if aspect_ratio > MAX_ASPECT_RATIO:
# Very wide image -> crop width to fit 832x480 aspect ratio
target_w, target_h = MAX_DIM, MIN_DIM
crop_width = int(round(height * MAX_ASPECT_RATIO))
left = (width - crop_width) // 2
image_to_resize = image.crop((left, 0, left + crop_width, height))
elif aspect_ratio < MIN_ASPECT_RATIO:
# Very tall image -> crop height to fit 480x832 aspect ratio
target_w, target_h = MIN_DIM, MAX_DIM
crop_height = int(round(width / MIN_ASPECT_RATIO))
top = (height - crop_height) // 2
image_to_resize = image.crop((0, top, width, top + crop_height))
else:
if width > height: # Landscape
target_w = MAX_DIM
target_h = int(round(target_w / aspect_ratio))
else: # Portrait
target_h = MAX_DIM
target_w = int(round(target_h * aspect_ratio))
final_w = round(target_w / MULTIPLE_OF) * MULTIPLE_OF
final_h = round(target_h / MULTIPLE_OF) * MULTIPLE_OF
final_w = max(MIN_DIM, min(MAX_DIM, final_w))
final_h = max(MIN_DIM, min(MAX_DIM, final_h))
return image_to_resize.resize((final_w, final_h), Image.LANCZOS)
def get_num_frames(duration_seconds: float):
return 1 + int(np.clip(
int(round(duration_seconds * FIXED_FPS)),
MIN_FRAMES_MODEL,
MAX_FRAMES_MODEL,
))
def get_duration(
input_image,
prompt,
steps,
negative_prompt,
duration_seconds,
guidance_scale,
guidance_scale_2,
seed,
randomize_seed,
progress,
):
BASE_FRAMES_HEIGHT_WIDTH = 81 * 832 * 624
BASE_STEP_DURATION = 12
width, height = resize_image(input_image).size
frames = get_num_frames(duration_seconds)
factor = frames * width * height / BASE_FRAMES_HEIGHT_WIDTH
step_duration = BASE_STEP_DURATION * factor
return 10 + int(steps) * step_duration
@spaces.GPU(duration=get_duration)
def generate_video(
input_image,
prompt,
steps = 4,
negative_prompt=default_negative_prompt,
duration_seconds = MAX_DURATION,
guidance_scale = 1,
guidance_scale_2 = 1,
seed = 42,
randomize_seed = False,
progress=gr.Progress(track_tqdm=True),
):
"""
Generate a video from an input image using the Wan 2.2 14B I2V model with Lightning LoRA.
This function takes an input image and generates a video animation based on the provided
prompt and parameters. It uses an FP8 qunatized Wan 2.2 14B Image-to-Video model in with Lightning LoRA
for fast generation in 4-8 steps.
Args:
input_image (PIL.Image): The input image to animate. Will be resized to target dimensions.
prompt (str): Text prompt describing the desired animation or motion.
steps (int, optional): Number of inference steps. More steps = higher quality but slower.
Defaults to 4. Range: 1-30.
negative_prompt (str, optional): Negative prompt to avoid unwanted elements.
Defaults to default_negative_prompt (contains unwanted visual artifacts).
duration_seconds (float, optional): Duration of the generated video in seconds.
Defaults to 2. Clamped between MIN_FRAMES_MODEL/FIXED_FPS and MAX_FRAMES_MODEL/FIXED_FPS.
guidance_scale (float, optional): Controls adherence to the prompt. Higher values = more adherence.
Defaults to 1.0. Range: 0.0-20.0.
guidance_scale_2 (float, optional): Controls adherence to the prompt. Higher values = more adherence.
Defaults to 1.0. Range: 0.0-20.0.
seed (int, optional): Random seed for reproducible results. Defaults to 42.
Range: 0 to MAX_SEED (2147483647).
randomize_seed (bool, optional): Whether to use a random seed instead of the provided seed.
Defaults to False.
progress (gr.Progress, optional): Gradio progress tracker. Defaults to gr.Progress(track_tqdm=True).
Returns:
tuple: A tuple containing:
- video_path (str): Path to the generated video file (.mp4)
- current_seed (int): The seed used for generation (useful when randomize_seed=True)
Raises:
gr.Error: If input_image is None (no image uploaded).
Note:
- Frame count is calculated as duration_seconds * FIXED_FPS (24)
- Output dimensions are adjusted to be multiples of MOD_VALUE (32)
- The function uses GPU acceleration via the @spaces.GPU decorator
- Generation time varies based on steps and duration (see get_duration function)
"""
if input_image is None:
raise gr.Error("Please upload an input image.")
num_frames = get_num_frames(duration_seconds)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
resized_image = resize_image(input_image)
output_frames_list = pipe(
image=resized_image,
prompt=prompt,
negative_prompt=negative_prompt,
height=resized_image.height,
width=resized_image.width,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
guidance_scale_2=float(guidance_scale_2),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed),
).frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
if check_ffmpeg():
try:
# Создаем временный файл для видео с звуком
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as audio_tmpfile:
video_with_audio_path = audio_tmpfile.name
# Команда ffmpeg для добавления тихого аудио
cmd = [
'ffmpeg',
'-f', 'lavfi',
'-i', 'anullsrc=channel_layout=stereo:sample_rate=44100',
'-i', video_path,
'-c:v', 'copy',
'-c:a', 'aac',
'-shortest',
'-y',
video_with_audio_path
]
# Запускаем ffmpeg
subprocess.run(cmd, capture_output=True, check=True)
# Создаем временный файл для заблюренного видео
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as blur_tmpfile:
blurred_video_path = blur_tmpfile.name
# Команда ffmpeg для создания гауссова размытия
cmd_blur = [
'ffmpeg',
'-i', video_with_audio_path, # Используем видео с аудио как источник
'-vf', 'gblur=sigma=25', # Гауссово размытие с sigma=5
'-c:a', 'copy', # Копируем аудио без изменений
'-y',
blurred_video_path
]
# Запускаем ffmpeg для создания блюра
subprocess.run(cmd_blur, capture_output=True, check=True)
# Удаляем исходный файл без звука
os.unlink(video_path)
return video_with_audio_path, blurred_video_path, current_seed
except Exception as e:
print(f"Error adding audio: {e}")
# В случае ошибки возвращаем видео без звука
return video_path, video_path, current_seed
else:
print("FFmpeg not available, returning video without audio")
return video_path, video_path, current_seed
with gr.Blocks() as demo:
gr.Markdown("# Fast 4 steps Wan 2.2 I2V (14B) with Lightning LoRA")
gr.Markdown("run Wan 2.2 in just 4-8 steps, with [Lightning LoRA](https://huggingface.co/Kijai/WanVideo_comfy/tree/main/Wan22-Lightning), fp8 quantization & AoT compilation - compatible with 🧨 diffusers and ZeroGPU⚡️")
with gr.Row():
with gr.Column():
input_image_component = gr.Image(type="pil", label="Input Image")
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=3.5, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=6, label="Inference Steps")
guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale - high noise stage")
guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale 2 - low noise stage")
generate_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
video_output_1 = gr.Video(label="Generated Video", autoplay=True, interactive=False)
video_output_2 = gr.Video(label="Generated Video", autoplay=True, interactive=False)
ui_inputs = [
input_image_component, prompt_input, steps_slider,
negative_prompt_input, duration_seconds_input,
guidance_scale_input, guidance_scale_2_input, seed_input, randomize_seed_checkbox
]
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output_1, video_output_2, seed_input])
gr.Examples(
examples=[
[
"wan_i2v_input.JPG",
"POV selfie video, white cat with sunglasses standing on surfboard, relaxed smile, tropical beach behind (clear water, green hills, blue sky with clouds). Surfboard tips, cat falls into ocean, camera plunges underwater with bubbles and sunlight beams. Brief underwater view of cat’s face, then cat resurfaces, still filming selfie, playful summer vacation mood.",
4,
],
[
"wan22_input_2.jpg",
"A sleek lunar vehicle glides into view from left to right, kicking up moon dust as astronauts in white spacesuits hop aboard with characteristic lunar bouncing movements. In the distant background, a VTOL craft descends straight down and lands silently on the surface. Throughout the entire scene, ethereal aurora borealis ribbons dance across the star-filled sky, casting shimmering curtains of green, blue, and purple light that bathe the lunar landscape in an otherworldly, magical glow.",
4,
],
[
"kill_bill.jpeg",
"Uma Thurman's character, Beatrix Kiddo, holds her razor-sharp katana blade steady in the cinematic lighting. Suddenly, the polished steel begins to soften and distort, like heated metal starting to lose its structural integrity. The blade's perfect edge slowly warps and droops, molten steel beginning to flow downward in silvery rivulets while maintaining its metallic sheen. The transformation starts subtly at first - a slight bend in the blade - then accelerates as the metal becomes increasingly fluid. The camera holds steady on her face as her piercing eyes gradually narrow, not with lethal focus, but with confusion and growing alarm as she watches her weapon dissolve before her eyes. Her breathing quickens slightly as she witnesses this impossible transformation. The melting intensifies, the katana's perfect form becoming increasingly abstract, dripping like liquid mercury from her grip. Molten droplets fall to the ground with soft metallic impacts. Her expression shifts from calm readiness to bewilderment and concern as her legendary instrument of vengeance literally liquefies in her hands, leaving her defenseless and disoriented",
6,
],
],
inputs=[input_image_component, prompt_input, steps_slider], outputs=[video_output_1, video_output_2, seed_input], fn=generate_video, cache_examples="lazy"
)
def check_ffmpeg():
try:
subprocess.run(['ffmpeg', '-version'], capture_output=True, check=True)
return True
except (subprocess.CalledProcessError, FileNotFoundError):
return False
if __name__ == "__main__":
demo.queue().launch(mcp_server=True) |