Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
| 3 |
+
|
| 4 |
+
from huggingface_hub import hf_hub_download
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
import pickle
|
| 10 |
+
import numpy as np
|
| 11 |
+
import re
|
| 12 |
+
import fasttext
|
| 13 |
+
|
| 14 |
+
svm_repo_id = "HighFive-OPJ/svm-sentiment-model"
|
| 15 |
+
svm_model_path = hf_hub_download(repo_id=svm_repo_id, filename="svm_model.pkl")
|
| 16 |
+
with open(svm_model_path, "rb") as f:
|
| 17 |
+
svm_model = pickle.load(f)
|
| 18 |
+
vectorizer_path = hf_hub_download(repo_id=svm_repo_id, filename="vectorizer.pkl")
|
| 19 |
+
with open(vectorizer_path, "rb") as f:
|
| 20 |
+
vectorizer = pickle.load(f)
|
| 21 |
+
|
| 22 |
+
fasttext_path = hf_hub_download(
|
| 23 |
+
repo_id="HighFive-OPJ/Deep_Learning",
|
| 24 |
+
filename="FastText.bin",
|
| 25 |
+
repo_type="dataset"
|
| 26 |
+
)
|
| 27 |
+
ft_model = fasttext.load_model(fasttext_path)
|
| 28 |
+
|
| 29 |
+
class LSTMClassifier(nn.Module):
|
| 30 |
+
def __init__(self, input_dim=300, hidden_dim=256, num_classes=3):
|
| 31 |
+
super().__init__()
|
| 32 |
+
self.lstm = nn.LSTM(input_dim, hidden_dim, batch_first=True, bidirectional=True)
|
| 33 |
+
self.fc = nn.Linear(hidden_dim * 2, num_classes)
|
| 34 |
+
|
| 35 |
+
def forward(self, x):
|
| 36 |
+
_, (hn, _) = self.lstm(x)
|
| 37 |
+
hn = torch.cat((hn[-2], hn[-1]), dim=1)
|
| 38 |
+
out = self.fc(hn)
|
| 39 |
+
return out
|
| 40 |
+
|
| 41 |
+
lstm_repo_id = "HighFive-OPJ/lstm-sentiment-model"
|
| 42 |
+
lstm_model_path = hf_hub_download(repo_id=lstm_repo_id, filename="fasttext_lstm.pt")
|
| 43 |
+
|
| 44 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 45 |
+
lstm_model = LSTMClassifier()
|
| 46 |
+
lstm_model.load_state_dict(torch.load(lstm_model_path, map_location=device))
|
| 47 |
+
lstm_model.to(device)
|
| 48 |
+
lstm_model.eval()
|
| 49 |
+
|
| 50 |
+
bert_repo_id = "HighFive-OPJ/bertic_sentiment"
|
| 51 |
+
bert_tokenizer = AutoTokenizer.from_pretrained(bert_repo_id)
|
| 52 |
+
bert_model = AutoModelForSequenceClassification.from_pretrained(bert_repo_id)
|
| 53 |
+
bert_model.to(device)
|
| 54 |
+
bert_model.eval()
|
| 55 |
+
|
| 56 |
+
def preprocess_text(text):
|
| 57 |
+
text = text.lower()
|
| 58 |
+
text = re.sub(r"[^a-zA-Z\s]", "", text).strip()
|
| 59 |
+
return text
|
| 60 |
+
|
| 61 |
+
def text_to_fasttext_tensor(text, max_len=200):
|
| 62 |
+
tokens = preprocess_text(text).split()
|
| 63 |
+
vectors = []
|
| 64 |
+
for t in tokens[:max_len]:
|
| 65 |
+
vec = ft_model.get_word_vector(t)
|
| 66 |
+
vectors.append(vec)
|
| 67 |
+
while len(vectors) < max_len:
|
| 68 |
+
vectors.append(np.zeros(300))
|
| 69 |
+
return torch.tensor([vectors], dtype=torch.float32).to(device)
|
| 70 |
+
|
| 71 |
+
def predict_with_svm(text):
|
| 72 |
+
transformed = vectorizer.transform([text])
|
| 73 |
+
prediction = svm_model.predict(transformed)
|
| 74 |
+
return int(prediction[0])
|
| 75 |
+
|
| 76 |
+
def predict_with_lstm(text):
|
| 77 |
+
input_tensor = text_to_fasttext_tensor(text)
|
| 78 |
+
with torch.no_grad():
|
| 79 |
+
outputs = lstm_model(input_tensor)
|
| 80 |
+
pred = torch.argmax(outputs, dim=1).item()
|
| 81 |
+
return pred
|
| 82 |
+
|
| 83 |
+
def predict_with_bert(text):
|
| 84 |
+
inputs = bert_tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device)
|
| 85 |
+
with torch.no_grad():
|
| 86 |
+
outputs = bert_model(**inputs)
|
| 87 |
+
logits = outputs.logits
|
| 88 |
+
predictions = logits.argmax(axis=-1).cpu().numpy()
|
| 89 |
+
bert_score = int(predictions[0])
|
| 90 |
+
if bert_score <= 2:
|
| 91 |
+
return 0
|
| 92 |
+
elif bert_score == 3:
|
| 93 |
+
return 1
|
| 94 |
+
else:
|
| 95 |
+
return 2
|
| 96 |
+
|
| 97 |
+
def analyze_sentiment(text):
|
| 98 |
+
try:
|
| 99 |
+
svm_result = predict_with_svm(text)
|
| 100 |
+
except Exception as e:
|
| 101 |
+
svm_result = f"Error: {str(e)}"
|
| 102 |
+
|
| 103 |
+
try:
|
| 104 |
+
lstm_result = predict_with_lstm(text)
|
| 105 |
+
except Exception as e:
|
| 106 |
+
lstm_result = f"Error: {str(e)}"
|
| 107 |
+
|
| 108 |
+
try:
|
| 109 |
+
bert_result = predict_with_bert(text)
|
| 110 |
+
except Exception as e:
|
| 111 |
+
bert_result = f"Error: {str(e)}"
|
| 112 |
+
|
| 113 |
+
try:
|
| 114 |
+
scores = []
|
| 115 |
+
for r in [svm_result, lstm_result, bert_result]:
|
| 116 |
+
if isinstance(r, int):
|
| 117 |
+
scores.append(r)
|
| 118 |
+
average = np.mean(scores) if scores else float("nan")
|
| 119 |
+
stats = f"Average Score (0=Pos,1=Neg,2=Neu): {average:.2f}\n"
|
| 120 |
+
except Exception as e:
|
| 121 |
+
stats = f"Error calculating stats: {str(e)}"
|
| 122 |
+
|
| 123 |
+
def format_output(result):
|
| 124 |
+
return convert_to_stars(result) if isinstance(result, int) else result
|
| 125 |
+
|
| 126 |
+
return (
|
| 127 |
+
format_output(svm_result),
|
| 128 |
+
format_output(lstm_result),
|
| 129 |
+
format_output(bert_result),
|
| 130 |
+
stats
|
| 131 |
+
)
|
| 132 |
+
def convert_to_stars(score):
|
| 133 |
+
star_map = {0: 5, 1: 1, 2: 3}
|
| 134 |
+
stars = star_map.get(score, 3)
|
| 135 |
+
return "★" * stars + "☆" * (5 - stars)
|
| 136 |
+
|
| 137 |
+
def process_input(text):
|
| 138 |
+
if not text.strip():
|
| 139 |
+
return ("", "", "", "Please enter valid text.")
|
| 140 |
+
try:
|
| 141 |
+
return analyze_sentiment(text)
|
| 142 |
+
except Exception as e:
|
| 143 |
+
error_message = f"Error during sentiment analysis:\n{str(e)}"
|
| 144 |
+
return ("error", "error", "error", error_message)
|
| 145 |
+
|
| 146 |
+
with gr.Blocks() as demo:
|
| 147 |
+
gr.Markdown("# Sentiment Analysis Demo")
|
| 148 |
+
gr.Markdown("""
|
| 149 |
+
Enter a review and see how different models evaluate its sentiment! This app uses:
|
| 150 |
+
- SVM for classic machine learning
|
| 151 |
+
- LSTM for deep learning (using FastText)
|
| 152 |
+
- BERTić for transformer-based analysis
|
| 153 |
+
""")
|
| 154 |
+
|
| 155 |
+
with gr.Row():
|
| 156 |
+
with gr.Column():
|
| 157 |
+
input_text = gr.Textbox(label="Enter your review:", lines=3)
|
| 158 |
+
analyze_button = gr.Button("Analyze Sentiment")
|
| 159 |
+
|
| 160 |
+
with gr.Column():
|
| 161 |
+
svm_output = gr.Textbox(label="SVM", interactive=False)
|
| 162 |
+
lstm_output = gr.Textbox(label="LSTM", interactive=False)
|
| 163 |
+
bert_output = gr.Textbox(label="BERTić", interactive=False)
|
| 164 |
+
stats_output = gr.Textbox(label="Statistics", interactive=False)
|
| 165 |
+
|
| 166 |
+
analyze_button.click(
|
| 167 |
+
process_input,
|
| 168 |
+
inputs=[input_text],
|
| 169 |
+
outputs=[svm_output, lstm_output, bert_output, stats_output]
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
demo.launch()
|