Spaces:
Paused
Paused
Upload 2 files
Browse files- app.py +11 -9
- externalmod.py +27 -26
app.py
CHANGED
|
@@ -125,9 +125,9 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css) as demo:
|
|
| 125 |
num_imagesone = gr.Slider(1, max_imagesone, value=max_imagesone, step=1, label='Nobody gets to see this label so I can put here whatever I want!', visible=False)
|
| 126 |
|
| 127 |
with gr.Row():
|
| 128 |
-
gen_button = gr.Button('Generate', scale=3)
|
| 129 |
-
stop_button = gr.Button('Stop', variant='secondary', interactive=False, scale=1)
|
| 130 |
-
gen_button.click(lambda: gr.update(interactive=True), None, stop_button)
|
| 131 |
|
| 132 |
with gr.Row():
|
| 133 |
output = [gr.Image(label='', show_download_button=True, elem_classes="outputone",
|
|
@@ -140,8 +140,9 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css) as demo:
|
|
| 140 |
gen_event = gr.on(triggers=[gen_button.click, txt_input.submit],
|
| 141 |
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5: gen_fn(m, t1, t2, n1, n2, n3, n4, n5) if (i < n) else None,
|
| 142 |
inputs=[img_in, num_imagesone, model_choice, txt_input, neg_input,
|
| 143 |
-
height, width, steps, cfg, seed], outputs=[o]
|
| 144 |
-
|
|
|
|
| 145 |
with gr.Row():
|
| 146 |
gr.HTML(
|
| 147 |
"""
|
|
@@ -170,8 +171,8 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css) as demo:
|
|
| 170 |
|
| 171 |
with gr.Row():
|
| 172 |
gen_button2 = gr.Button(f'Generate up to {int(max_images)} images in up to 3 minutes total', scale=3)
|
| 173 |
-
stop_button2 = gr.Button('Stop', variant='secondary', interactive=False, scale=1)
|
| 174 |
-
gen_button2.click(lambda: gr.update(interactive=True), None, stop_button2)
|
| 175 |
gr.HTML(
|
| 176 |
"""
|
| 177 |
<div style="text-align: center; max-width: 1200px; margin: 0 auto;">
|
|
@@ -195,8 +196,9 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css) as demo:
|
|
| 195 |
gen_event2 = gr.on(triggers=[gen_button2.click, txt_input2.submit],
|
| 196 |
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5: gen_fn(m, t1, t2, n1, n2, n3, n4, n5) if (i < n) else None,
|
| 197 |
inputs=[img_i, num_images, model_choice2, txt_input2, neg_input2,
|
| 198 |
-
height2, width2, steps2, cfg2, seed2], outputs=[o]
|
| 199 |
-
|
|
|
|
| 200 |
with gr.Row():
|
| 201 |
gr.HTML(
|
| 202 |
"""
|
|
|
|
| 125 |
num_imagesone = gr.Slider(1, max_imagesone, value=max_imagesone, step=1, label='Nobody gets to see this label so I can put here whatever I want!', visible=False)
|
| 126 |
|
| 127 |
with gr.Row():
|
| 128 |
+
gen_button = gr.Button('Generate', variant='primary', scale=3)
|
| 129 |
+
#stop_button = gr.Button('Stop', variant='secondary', interactive=False, scale=1)
|
| 130 |
+
#gen_button.click(lambda: gr.update(interactive=True), None, stop_button)
|
| 131 |
|
| 132 |
with gr.Row():
|
| 133 |
output = [gr.Image(label='', show_download_button=True, elem_classes="outputone",
|
|
|
|
| 140 |
gen_event = gr.on(triggers=[gen_button.click, txt_input.submit],
|
| 141 |
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5: gen_fn(m, t1, t2, n1, n2, n3, n4, n5) if (i < n) else None,
|
| 142 |
inputs=[img_in, num_imagesone, model_choice, txt_input, neg_input,
|
| 143 |
+
height, width, steps, cfg, seed], outputs=[o],
|
| 144 |
+
concurrency_limit=None, queue=False) # Be sure to delete ", queue=False" when activating the stop button
|
| 145 |
+
#stop_button.click(lambda: gr.update(interactive = False), None, stop_button, cancels=[gen_event])
|
| 146 |
with gr.Row():
|
| 147 |
gr.HTML(
|
| 148 |
"""
|
|
|
|
| 171 |
|
| 172 |
with gr.Row():
|
| 173 |
gen_button2 = gr.Button(f'Generate up to {int(max_images)} images in up to 3 minutes total', scale=3)
|
| 174 |
+
#stop_button2 = gr.Button('Stop', variant='secondary', interactive=False, scale=1)
|
| 175 |
+
#gen_button2.click(lambda: gr.update(interactive=True), None, stop_button2)
|
| 176 |
gr.HTML(
|
| 177 |
"""
|
| 178 |
<div style="text-align: center; max-width: 1200px; margin: 0 auto;">
|
|
|
|
| 196 |
gen_event2 = gr.on(triggers=[gen_button2.click, txt_input2.submit],
|
| 197 |
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5: gen_fn(m, t1, t2, n1, n2, n3, n4, n5) if (i < n) else None,
|
| 198 |
inputs=[img_i, num_images, model_choice2, txt_input2, neg_input2,
|
| 199 |
+
height2, width2, steps2, cfg2, seed2], outputs=[o],
|
| 200 |
+
concurrency_limit=None, queue=False) # Be sure to delete ", queue=False" when activating the stop button
|
| 201 |
+
#stop_button2.click(lambda: gr.update(interactive=False), None, stop_button2, cancels=[gen_event2])
|
| 202 |
with gr.Row():
|
| 203 |
gr.HTML(
|
| 204 |
"""
|
externalmod.py
CHANGED
|
@@ -9,7 +9,7 @@ import re
|
|
| 9 |
import tempfile
|
| 10 |
import warnings
|
| 11 |
from pathlib import Path
|
| 12 |
-
from typing import TYPE_CHECKING, Callable
|
| 13 |
|
| 14 |
import httpx
|
| 15 |
import huggingface_hub
|
|
@@ -33,6 +33,7 @@ if TYPE_CHECKING:
|
|
| 33 |
from gradio.interface import Interface
|
| 34 |
|
| 35 |
|
|
|
|
| 36 |
server_timeout = 600
|
| 37 |
|
| 38 |
|
|
@@ -40,7 +41,7 @@ server_timeout = 600
|
|
| 40 |
def load(
|
| 41 |
name: str,
|
| 42 |
src: str | None = None,
|
| 43 |
-
hf_token: str | None = None,
|
| 44 |
alias: str | None = None,
|
| 45 |
**kwargs,
|
| 46 |
) -> Blocks:
|
|
@@ -51,7 +52,7 @@ def load(
|
|
| 51 |
Parameters:
|
| 52 |
name: the name of the model (e.g. "gpt2" or "facebook/bart-base") or space (e.g. "flax-community/spanish-gpt2"), can include the `src` as prefix (e.g. "models/facebook/bart-base")
|
| 53 |
src: the source of the model: `models` or `spaces` (or leave empty if source is provided as a prefix in `name`)
|
| 54 |
-
hf_token: optional access token for loading private Hugging Face Hub models or spaces. Find your token here: https://huggingface.co/settings/tokens. Warning: only provide
|
| 55 |
alias: optional string used as the name of the loaded model instead of the default name (only applies if loading a Space running Gradio 2.x)
|
| 56 |
Returns:
|
| 57 |
a Gradio Blocks object for the given model
|
|
@@ -68,7 +69,7 @@ def load(
|
|
| 68 |
def load_blocks_from_repo(
|
| 69 |
name: str,
|
| 70 |
src: str | None = None,
|
| 71 |
-
hf_token: str | None = None,
|
| 72 |
alias: str | None = None,
|
| 73 |
**kwargs,
|
| 74 |
) -> Blocks:
|
|
@@ -92,7 +93,7 @@ def load_blocks_from_repo(
|
|
| 92 |
if src.lower() not in factory_methods:
|
| 93 |
raise ValueError(f"parameter: src must be one of {factory_methods.keys()}")
|
| 94 |
|
| 95 |
-
if hf_token is not None:
|
| 96 |
if Context.hf_token is not None and Context.hf_token != hf_token:
|
| 97 |
warnings.warn(
|
| 98 |
"""You are loading a model/Space with a different access token than the one you used to load a previous model/Space. This is not recommended, as it may cause unexpected behavior."""
|
|
@@ -103,12 +104,16 @@ def load_blocks_from_repo(
|
|
| 103 |
return blocks
|
| 104 |
|
| 105 |
|
| 106 |
-
def from_model(
|
|
|
|
|
|
|
| 107 |
model_url = f"https://huggingface.co/{model_name}"
|
| 108 |
api_url = f"https://api-inference.huggingface.co/models/{model_name}"
|
| 109 |
print(f"Fetching model from: {model_url}")
|
| 110 |
|
| 111 |
-
headers =
|
|
|
|
|
|
|
| 112 |
response = httpx.request("GET", api_url, headers=headers)
|
| 113 |
if response.status_code != 200:
|
| 114 |
raise ModelNotFoundError(
|
|
@@ -371,7 +376,11 @@ def from_model(model_name: str, hf_token: str | None, alias: str | None, **kwarg
|
|
| 371 |
def query_huggingface_inference_endpoints(*data, **kwargs):
|
| 372 |
if preprocess is not None:
|
| 373 |
data = preprocess(*data)
|
| 374 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 375 |
if postprocess is not None:
|
| 376 |
data = postprocess(data) # type: ignore
|
| 377 |
return data
|
|
@@ -383,7 +392,7 @@ def from_model(model_name: str, hf_token: str | None, alias: str | None, **kwarg
|
|
| 383 |
"inputs": inputs,
|
| 384 |
"outputs": outputs,
|
| 385 |
"title": model_name,
|
| 386 |
-
|
| 387 |
}
|
| 388 |
|
| 389 |
kwargs = dict(interface_info, **kwargs)
|
|
@@ -394,19 +403,12 @@ def from_model(model_name: str, hf_token: str | None, alias: str | None, **kwarg
|
|
| 394 |
def from_spaces(
|
| 395 |
space_name: str, hf_token: str | None, alias: str | None, **kwargs
|
| 396 |
) -> Blocks:
|
| 397 |
-
client = Client(
|
| 398 |
-
space_name,
|
| 399 |
-
hf_token=hf_token,
|
| 400 |
-
download_files=False,
|
| 401 |
-
_skip_components=False,
|
| 402 |
-
)
|
| 403 |
-
|
| 404 |
space_url = f"https://huggingface.co/spaces/{space_name}"
|
| 405 |
|
| 406 |
print(f"Fetching Space from: {space_url}")
|
| 407 |
|
| 408 |
headers = {}
|
| 409 |
-
if hf_token
|
| 410 |
headers["Authorization"] = f"Bearer {hf_token}"
|
| 411 |
|
| 412 |
iframe_url = (
|
|
@@ -443,8 +445,7 @@ def from_spaces(
|
|
| 443 |
"Blocks or Interface locally. You may find this Guide helpful: "
|
| 444 |
"https://gradio.app/using_blocks_like_functions/"
|
| 445 |
)
|
| 446 |
-
|
| 447 |
-
return from_spaces_blocks(space=space_name, hf_token=hf_token)
|
| 448 |
|
| 449 |
|
| 450 |
def from_spaces_blocks(space: str, hf_token: str | None) -> Blocks:
|
|
@@ -489,7 +490,7 @@ def from_spaces_interface(
|
|
| 489 |
config = external_utils.streamline_spaces_interface(config)
|
| 490 |
api_url = f"{iframe_url}/api/predict/"
|
| 491 |
headers = {"Content-Type": "application/json"}
|
| 492 |
-
if hf_token
|
| 493 |
headers["Authorization"] = f"Bearer {hf_token}"
|
| 494 |
|
| 495 |
# The function should call the API with preprocessed data
|
|
@@ -529,7 +530,7 @@ def gr_Interface_load(
|
|
| 529 |
src: str | None = None,
|
| 530 |
hf_token: str | None = None,
|
| 531 |
alias: str | None = None,
|
| 532 |
-
**kwargs,
|
| 533 |
) -> Blocks:
|
| 534 |
try:
|
| 535 |
return load_blocks_from_repo(name, src, hf_token, alias)
|
|
@@ -543,8 +544,8 @@ def list_uniq(l):
|
|
| 543 |
|
| 544 |
|
| 545 |
def get_status(model_name: str):
|
| 546 |
-
from huggingface_hub import
|
| 547 |
-
client =
|
| 548 |
return client.get_model_status(model_name)
|
| 549 |
|
| 550 |
|
|
@@ -563,20 +564,20 @@ def is_loadable(model_name: str, force_gpu: bool = False):
|
|
| 563 |
|
| 564 |
def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30, force_gpu=False, check_status=False):
|
| 565 |
from huggingface_hub import HfApi
|
| 566 |
-
api = HfApi()
|
| 567 |
default_tags = ["diffusers"]
|
| 568 |
if not sort: sort = "last_modified"
|
| 569 |
limit = limit * 20 if check_status and force_gpu else limit * 5
|
| 570 |
models = []
|
| 571 |
try:
|
| 572 |
-
model_infos = api.list_models(author=author, task="text-to-image",
|
| 573 |
tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit)
|
| 574 |
except Exception as e:
|
| 575 |
print(f"Error: Failed to list models.")
|
| 576 |
print(e)
|
| 577 |
return models
|
| 578 |
for model in model_infos:
|
| 579 |
-
if not model.private and not model.gated:
|
| 580 |
loadable = is_loadable(model.id, force_gpu) if check_status else True
|
| 581 |
if not_tag and not_tag in model.tags or not loadable: continue
|
| 582 |
models.append(model.id)
|
|
|
|
| 9 |
import tempfile
|
| 10 |
import warnings
|
| 11 |
from pathlib import Path
|
| 12 |
+
from typing import TYPE_CHECKING, Callable, Literal
|
| 13 |
|
| 14 |
import httpx
|
| 15 |
import huggingface_hub
|
|
|
|
| 33 |
from gradio.interface import Interface
|
| 34 |
|
| 35 |
|
| 36 |
+
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
|
| 37 |
server_timeout = 600
|
| 38 |
|
| 39 |
|
|
|
|
| 41 |
def load(
|
| 42 |
name: str,
|
| 43 |
src: str | None = None,
|
| 44 |
+
hf_token: str | Literal[False] | None = None,
|
| 45 |
alias: str | None = None,
|
| 46 |
**kwargs,
|
| 47 |
) -> Blocks:
|
|
|
|
| 52 |
Parameters:
|
| 53 |
name: the name of the model (e.g. "gpt2" or "facebook/bart-base") or space (e.g. "flax-community/spanish-gpt2"), can include the `src` as prefix (e.g. "models/facebook/bart-base")
|
| 54 |
src: the source of the model: `models` or `spaces` (or leave empty if source is provided as a prefix in `name`)
|
| 55 |
+
hf_token: optional access token for loading private Hugging Face Hub models or spaces. Will default to the locally saved token if not provided. Pass `token=False` if you don't want to send your token to the server. Find your token here: https://huggingface.co/settings/tokens. Warning: only provide a token if you are loading a trusted private Space as it can be read by the Space you are loading.
|
| 56 |
alias: optional string used as the name of the loaded model instead of the default name (only applies if loading a Space running Gradio 2.x)
|
| 57 |
Returns:
|
| 58 |
a Gradio Blocks object for the given model
|
|
|
|
| 69 |
def load_blocks_from_repo(
|
| 70 |
name: str,
|
| 71 |
src: str | None = None,
|
| 72 |
+
hf_token: str | Literal[False] | None = None,
|
| 73 |
alias: str | None = None,
|
| 74 |
**kwargs,
|
| 75 |
) -> Blocks:
|
|
|
|
| 93 |
if src.lower() not in factory_methods:
|
| 94 |
raise ValueError(f"parameter: src must be one of {factory_methods.keys()}")
|
| 95 |
|
| 96 |
+
if hf_token is not None and hf_token is not False:
|
| 97 |
if Context.hf_token is not None and Context.hf_token != hf_token:
|
| 98 |
warnings.warn(
|
| 99 |
"""You are loading a model/Space with a different access token than the one you used to load a previous model/Space. This is not recommended, as it may cause unexpected behavior."""
|
|
|
|
| 104 |
return blocks
|
| 105 |
|
| 106 |
|
| 107 |
+
def from_model(
|
| 108 |
+
model_name: str, hf_token: str | Literal[False] | None, alias: str | None, **kwargs
|
| 109 |
+
):
|
| 110 |
model_url = f"https://huggingface.co/{model_name}"
|
| 111 |
api_url = f"https://api-inference.huggingface.co/models/{model_name}"
|
| 112 |
print(f"Fetching model from: {model_url}")
|
| 113 |
|
| 114 |
+
headers = (
|
| 115 |
+
{} if hf_token in [False, None] else {"Authorization": f"Bearer {hf_token}"}
|
| 116 |
+
)
|
| 117 |
response = httpx.request("GET", api_url, headers=headers)
|
| 118 |
if response.status_code != 200:
|
| 119 |
raise ModelNotFoundError(
|
|
|
|
| 376 |
def query_huggingface_inference_endpoints(*data, **kwargs):
|
| 377 |
if preprocess is not None:
|
| 378 |
data = preprocess(*data)
|
| 379 |
+
try:
|
| 380 |
+
data = fn(*data, **kwargs) # type: ignore
|
| 381 |
+
except huggingface_hub.utils.HfHubHTTPError as e:
|
| 382 |
+
if "429" in str(e):
|
| 383 |
+
raise TooManyRequestsError() from e
|
| 384 |
if postprocess is not None:
|
| 385 |
data = postprocess(data) # type: ignore
|
| 386 |
return data
|
|
|
|
| 392 |
"inputs": inputs,
|
| 393 |
"outputs": outputs,
|
| 394 |
"title": model_name,
|
| 395 |
+
#"examples": examples,
|
| 396 |
}
|
| 397 |
|
| 398 |
kwargs = dict(interface_info, **kwargs)
|
|
|
|
| 403 |
def from_spaces(
|
| 404 |
space_name: str, hf_token: str | None, alias: str | None, **kwargs
|
| 405 |
) -> Blocks:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 406 |
space_url = f"https://huggingface.co/spaces/{space_name}"
|
| 407 |
|
| 408 |
print(f"Fetching Space from: {space_url}")
|
| 409 |
|
| 410 |
headers = {}
|
| 411 |
+
if hf_token not in [False, None]:
|
| 412 |
headers["Authorization"] = f"Bearer {hf_token}"
|
| 413 |
|
| 414 |
iframe_url = (
|
|
|
|
| 445 |
"Blocks or Interface locally. You may find this Guide helpful: "
|
| 446 |
"https://gradio.app/using_blocks_like_functions/"
|
| 447 |
)
|
| 448 |
+
return from_spaces_blocks(space=space_name, hf_token=hf_token)
|
|
|
|
| 449 |
|
| 450 |
|
| 451 |
def from_spaces_blocks(space: str, hf_token: str | None) -> Blocks:
|
|
|
|
| 490 |
config = external_utils.streamline_spaces_interface(config)
|
| 491 |
api_url = f"{iframe_url}/api/predict/"
|
| 492 |
headers = {"Content-Type": "application/json"}
|
| 493 |
+
if hf_token not in [False, None]:
|
| 494 |
headers["Authorization"] = f"Bearer {hf_token}"
|
| 495 |
|
| 496 |
# The function should call the API with preprocessed data
|
|
|
|
| 530 |
src: str | None = None,
|
| 531 |
hf_token: str | None = None,
|
| 532 |
alias: str | None = None,
|
| 533 |
+
**kwargs, # ignore
|
| 534 |
) -> Blocks:
|
| 535 |
try:
|
| 536 |
return load_blocks_from_repo(name, src, hf_token, alias)
|
|
|
|
| 544 |
|
| 545 |
|
| 546 |
def get_status(model_name: str):
|
| 547 |
+
from huggingface_hub import AsyncInferenceClient
|
| 548 |
+
client = AsyncInferenceClient(token=HF_TOKEN, timeout=10)
|
| 549 |
return client.get_model_status(model_name)
|
| 550 |
|
| 551 |
|
|
|
|
| 564 |
|
| 565 |
def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30, force_gpu=False, check_status=False):
|
| 566 |
from huggingface_hub import HfApi
|
| 567 |
+
api = HfApi(token=HF_TOKEN)
|
| 568 |
default_tags = ["diffusers"]
|
| 569 |
if not sort: sort = "last_modified"
|
| 570 |
limit = limit * 20 if check_status and force_gpu else limit * 5
|
| 571 |
models = []
|
| 572 |
try:
|
| 573 |
+
model_infos = api.list_models(author=author, #task="text-to-image",
|
| 574 |
tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit)
|
| 575 |
except Exception as e:
|
| 576 |
print(f"Error: Failed to list models.")
|
| 577 |
print(e)
|
| 578 |
return models
|
| 579 |
for model in model_infos:
|
| 580 |
+
if not model.private and not model.gated or HF_TOKEN is not None:
|
| 581 |
loadable = is_loadable(model.id, force_gpu) if check_status else True
|
| 582 |
if not_tag and not_tag in model.tags or not loadable: continue
|
| 583 |
models.append(model.id)
|