Spaces:
Sleeping
Sleeping
Update app/app.py
Browse files- app/app.py +69 -11
app/app.py
CHANGED
|
@@ -6,30 +6,64 @@ from fastapi import FastAPI, Request
|
|
| 6 |
from pydantic import BaseModel
|
| 7 |
from llama_cpp import Llama
|
| 8 |
import os
|
|
|
|
|
|
|
| 9 |
from app.policy_vector_db import PolicyVectorDB, ensure_db_populated
|
| 10 |
|
| 11 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
app = FastAPI()
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
# -----------------------------
|
| 15 |
# β
Vector DB Configuration
|
| 16 |
# -----------------------------
|
| 17 |
DB_PERSIST_DIRECTORY = "/app/vector_database"
|
| 18 |
CHUNKS_FILE_PATH = "/app/processed_chunks.json"
|
| 19 |
|
| 20 |
-
|
| 21 |
-
db = PolicyVectorDB(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
if not ensure_db_populated(db, CHUNKS_FILE_PATH):
|
| 23 |
-
|
| 24 |
else:
|
| 25 |
-
|
| 26 |
|
| 27 |
# -----------------------------
|
| 28 |
# β
Load GGUF Model with llama-cpp-python (model is pre-downloaded in Dockerfile)
|
| 29 |
# -----------------------------
|
| 30 |
MODEL_PATH = "/app/tinyllama_dop_q4_k_m.gguf"
|
| 31 |
|
| 32 |
-
|
| 33 |
llm = Llama(
|
| 34 |
model_path=MODEL_PATH,
|
| 35 |
n_ctx=1024,
|
|
@@ -38,7 +72,7 @@ llm = Llama(
|
|
| 38 |
use_mlock=False,
|
| 39 |
verbose=False
|
| 40 |
)
|
| 41 |
-
|
| 42 |
|
| 43 |
# -----------------------------
|
| 44 |
# β
Request Schema
|
|
@@ -52,12 +86,36 @@ class Query(BaseModel):
|
|
| 52 |
@app.post("/chat/")
|
| 53 |
async def chat(query: Query):
|
| 54 |
question = query.question
|
|
|
|
|
|
|
|
|
|
| 55 |
search_results = db.search(question)
|
| 56 |
-
|
|
|
|
| 57 |
|
| 58 |
-
|
|
|
|
|
|
|
| 59 |
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
answer = response["choices"][0]["text"].strip()
|
| 62 |
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from pydantic import BaseModel
|
| 7 |
from llama_cpp import Llama
|
| 8 |
import os
|
| 9 |
+
import logging
|
| 10 |
+
from typing import Optional
|
| 11 |
from app.policy_vector_db import PolicyVectorDB, ensure_db_populated
|
| 12 |
|
| 13 |
+
# -----------------------------
|
| 14 |
+
# β
Logging Configuration
|
| 15 |
+
# -----------------------------
|
| 16 |
+
logging.basicConfig(level=logging.INFO)
|
| 17 |
+
logger = logging.getLogger("app")
|
| 18 |
+
|
| 19 |
+
# -----------------------------
|
| 20 |
+
# β
Initialize FastAPI App
|
| 21 |
+
# -----------------------------
|
| 22 |
app = FastAPI()
|
| 23 |
|
| 24 |
+
# -----------------------------
|
| 25 |
+
# β
Health Check Endpoint
|
| 26 |
+
# -----------------------------
|
| 27 |
+
@app.get("/")
|
| 28 |
+
async def root():
|
| 29 |
+
return {"status": "β
Server is running and ready."}
|
| 30 |
+
|
| 31 |
+
# -----------------------------
|
| 32 |
+
# β
Feedback Collection Endpoint
|
| 33 |
+
# -----------------------------
|
| 34 |
+
class Feedback(BaseModel):
|
| 35 |
+
question: str
|
| 36 |
+
answer: str
|
| 37 |
+
feedback: str
|
| 38 |
+
|
| 39 |
+
@app.post("/feedback/")
|
| 40 |
+
async def collect_feedback(feedback: Feedback):
|
| 41 |
+
logger.info(f"[FEEDBACK] Question: {feedback.question} | Answer: {feedback.answer} | Feedback: {feedback.feedback}")
|
| 42 |
+
return {"status": "β
Feedback recorded. Thank you!"}
|
| 43 |
+
|
| 44 |
# -----------------------------
|
| 45 |
# β
Vector DB Configuration
|
| 46 |
# -----------------------------
|
| 47 |
DB_PERSIST_DIRECTORY = "/app/vector_database"
|
| 48 |
CHUNKS_FILE_PATH = "/app/processed_chunks.json"
|
| 49 |
|
| 50 |
+
logger.info("[INFO] Initializing vector DB...")
|
| 51 |
+
db = PolicyVectorDB(
|
| 52 |
+
persist_directory=DB_PERSIST_DIRECTORY,
|
| 53 |
+
top_k_default=7, # Raise top_k for broader context
|
| 54 |
+
relevance_threshold=0.60 # Lower threshold for more inclusive context
|
| 55 |
+
)
|
| 56 |
if not ensure_db_populated(db, CHUNKS_FILE_PATH):
|
| 57 |
+
logger.warning("[WARNING] DB not populated. Chunks file may be missing.")
|
| 58 |
else:
|
| 59 |
+
logger.info("[INFO] Vector DB ready.")
|
| 60 |
|
| 61 |
# -----------------------------
|
| 62 |
# β
Load GGUF Model with llama-cpp-python (model is pre-downloaded in Dockerfile)
|
| 63 |
# -----------------------------
|
| 64 |
MODEL_PATH = "/app/tinyllama_dop_q4_k_m.gguf"
|
| 65 |
|
| 66 |
+
logger.info(f"[INFO] Loading GGUF model from: {MODEL_PATH}")
|
| 67 |
llm = Llama(
|
| 68 |
model_path=MODEL_PATH,
|
| 69 |
n_ctx=1024,
|
|
|
|
| 72 |
use_mlock=False,
|
| 73 |
verbose=False
|
| 74 |
)
|
| 75 |
+
logger.info("[INFO] Model loaded successfully.")
|
| 76 |
|
| 77 |
# -----------------------------
|
| 78 |
# β
Request Schema
|
|
|
|
| 86 |
@app.post("/chat/")
|
| 87 |
async def chat(query: Query):
|
| 88 |
question = query.question
|
| 89 |
+
logger.info(f"[QUERY] {question}")
|
| 90 |
+
|
| 91 |
+
# Vector DB search
|
| 92 |
search_results = db.search(question)
|
| 93 |
+
context_chunks = [res for res in search_results if res["relevance_score"] > db.relevance_threshold]
|
| 94 |
+
context = "\n".join([res["text"] for res in context_chunks])
|
| 95 |
|
| 96 |
+
if not context:
|
| 97 |
+
logger.warning("[WARN] No relevant context found. Answering without it.")
|
| 98 |
+
context = "No relevant context found in policy database."
|
| 99 |
|
| 100 |
+
# Prompt Template
|
| 101 |
+
prompt = f"""You are a helpful assistant trained on NEEPCO Delegation of Powers policies.
|
| 102 |
+
|
| 103 |
+
### Relevant Context:
|
| 104 |
+
{context}
|
| 105 |
+
|
| 106 |
+
### Question:
|
| 107 |
+
{question}
|
| 108 |
+
|
| 109 |
+
### Answer:"""
|
| 110 |
+
|
| 111 |
+
# LLM Inference
|
| 112 |
+
response = llm(prompt, max_tokens=200, stop=["###"], temperature=0.2)
|
| 113 |
answer = response["choices"][0]["text"].strip()
|
| 114 |
|
| 115 |
+
logger.info(f"[RESPONSE] {answer}")
|
| 116 |
+
|
| 117 |
+
return {
|
| 118 |
+
"question": question,
|
| 119 |
+
"context_used": context,
|
| 120 |
+
"answer": answer
|
| 121 |
+
}
|