Spaces:
Running
Running
25july upload
Browse files- Dockerfile +14 -21
- app/app.py +61 -48
- app/policy_vector_db.py +96 -83
- processed_chunks.json +0 -0
- requirements.txt +5 -1
Dockerfile
CHANGED
|
@@ -1,39 +1,32 @@
|
|
| 1 |
-
# Use official Python 3.11 image
|
| 2 |
FROM python:3.11
|
| 3 |
|
| 4 |
-
# Install system dependencies
|
| 5 |
RUN apt-get update && apt-get install -y \
|
| 6 |
-
git \
|
| 7 |
-
wget \
|
| 8 |
build-essential \
|
| 9 |
-
libopenblas-dev \
|
| 10 |
-
libcurl4-openssl-dev \
|
| 11 |
-
curl \
|
| 12 |
&& rm -rf /var/lib/apt/lists/*
|
| 13 |
|
| 14 |
# Set working directory
|
| 15 |
WORKDIR /app
|
| 16 |
|
| 17 |
-
# Set Hugging Face
|
|
|
|
| 18 |
ENV TRANSFORMERS_CACHE=/app/.cache \
|
| 19 |
HF_HOME=/app/.cache
|
|
|
|
| 20 |
|
| 21 |
-
#
|
| 22 |
-
|
| 23 |
|
| 24 |
-
#
|
| 25 |
-
COPY . .
|
| 26 |
-
|
| 27 |
-
# ✅ Download and install llama-cpp-python wheel from Hugging Face Dataset
|
| 28 |
-
RUN wget https://huggingface.co/datasets/Kalpokoch/wheel-llama/resolve/main/llama_cpp_python-0.3.13-cp311-cp311-linux_x86_64.whl && \
|
| 29 |
-
pip install llama_cpp_python-0.3.13-cp311-cp311-linux_x86_64.whl && \
|
| 30 |
-
rm llama_cpp_python-0.3.13-cp311-cp311-linux_x86_64.whl
|
| 31 |
-
|
| 32 |
-
# Install remaining Python dependencies
|
| 33 |
RUN pip install --no-cache-dir -r requirements.txt
|
| 34 |
|
| 35 |
-
#
|
|
|
|
|
|
|
|
|
|
| 36 |
EXPOSE 7860
|
| 37 |
|
| 38 |
-
#
|
| 39 |
CMD ["uvicorn", "app.app:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
|
|
|
| 1 |
+
# Use official Python 3.11 image
|
| 2 |
FROM python:3.11
|
| 3 |
|
| 4 |
+
# Install system dependencies needed for building Python packages
|
| 5 |
RUN apt-get update && apt-get install -y \
|
|
|
|
|
|
|
| 6 |
build-essential \
|
|
|
|
|
|
|
|
|
|
| 7 |
&& rm -rf /var/lib/apt/lists/*
|
| 8 |
|
| 9 |
# Set working directory
|
| 10 |
WORKDIR /app
|
| 11 |
|
| 12 |
+
# Set Hugging Face cache directory and grant permissions
|
| 13 |
+
# Models downloaded from the Hub will be stored here.
|
| 14 |
ENV TRANSFORMERS_CACHE=/app/.cache \
|
| 15 |
HF_HOME=/app/.cache
|
| 16 |
+
RUN mkdir -p /app/.cache && chmod -R 777 /app/.cache
|
| 17 |
|
| 18 |
+
# Copy only the requirements file to leverage Docker cache
|
| 19 |
+
COPY requirements.txt .
|
| 20 |
|
| 21 |
+
# Install Python dependencies
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
RUN pip install --no-cache-dir -r requirements.txt
|
| 23 |
|
| 24 |
+
# Copy the rest of your application code
|
| 25 |
+
COPY . .
|
| 26 |
+
|
| 27 |
+
# Expose the port the app runs on
|
| 28 |
EXPOSE 7860
|
| 29 |
|
| 30 |
+
# Command to run the FastAPI application
|
| 31 |
CMD ["uvicorn", "app.app:app", "--host", "0.0.0.0", "--port", "7860"]
|
| 32 |
+
|
app/app.py
CHANGED
|
@@ -1,48 +1,44 @@
|
|
| 1 |
-
from fastapi import FastAPI
|
| 2 |
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
from pydantic import BaseModel
|
| 4 |
-
|
| 5 |
-
from
|
| 6 |
-
import
|
| 7 |
-
import json
|
| 8 |
-
import numpy as np
|
| 9 |
-
from typing import List
|
| 10 |
-
from sentence_transformers import SentenceTransformer
|
| 11 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
| 12 |
|
| 13 |
-
#
|
| 14 |
-
with open("processed_chunks.json", "r") as f:
|
| 15 |
-
chunks = json.load(f)
|
| 16 |
|
| 17 |
-
# Load
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
#
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
local_dir="/app/models",
|
| 29 |
-
token=os.getenv("HF_TOKEN")
|
| 30 |
)
|
| 31 |
|
| 32 |
-
#
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
| 37 |
)
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
# FastAPI
|
| 40 |
app = FastAPI()
|
| 41 |
|
| 42 |
-
# Allow Netlify frontend to access the backend
|
| 43 |
app.add_middleware(
|
| 44 |
CORSMiddleware,
|
| 45 |
-
allow_origins=["*"],
|
| 46 |
allow_credentials=True,
|
| 47 |
allow_methods=["*"],
|
| 48 |
allow_headers=["*"],
|
|
@@ -50,7 +46,7 @@ app.add_middleware(
|
|
| 50 |
|
| 51 |
@app.get("/")
|
| 52 |
def read_root():
|
| 53 |
-
return {"message": "RAG chatbot backend is running!"}
|
| 54 |
|
| 55 |
class ChatRequest(BaseModel):
|
| 56 |
question: str
|
|
@@ -61,23 +57,40 @@ def chat(request: ChatRequest):
|
|
| 61 |
if not question:
|
| 62 |
return {"response": "Please ask a question."}
|
| 63 |
|
| 64 |
-
#
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
-
#
|
|
|
|
| 73 |
prompt = (
|
| 74 |
-
f"
|
| 75 |
-
f"
|
| 76 |
-
f"
|
|
|
|
|
|
|
| 77 |
)
|
| 78 |
|
| 79 |
-
# Generate a response
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
-
return {"response": reply}
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
from pydantic import BaseModel
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 6 |
+
from app.policy_vector_db import PolicyVectorDB # Import your class
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
# --- 1. Initialize the Vector Database and LLM ---
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
# Load the vector database.
|
| 11 |
+
# This connects to the persistent ChromaDB storage created by policy_vector_db.py
|
| 12 |
+
print("Loading Vector Database...")
|
| 13 |
+
db = PolicyVectorDB(persist_directory="policy_vector_db")
|
| 14 |
+
print("Vector Database loaded successfully!")
|
| 15 |
|
| 16 |
+
# Load your fine-tuned model from Hugging Face Hub
|
| 17 |
+
model_id = "Kalpokoch/QuntizedTinyLama"
|
| 18 |
+
print(f"Loading model: {model_id}...")
|
| 19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 20 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 21 |
+
model_id,
|
| 22 |
+
torch_dtype=torch.bfloat16,
|
| 23 |
+
device_map="auto"
|
|
|
|
|
|
|
| 24 |
)
|
| 25 |
|
| 26 |
+
# Create a text-generation pipeline for the LLM
|
| 27 |
+
pipe = pipeline(
|
| 28 |
+
"text-generation",
|
| 29 |
+
model=model,
|
| 30 |
+
tokenizer=tokenizer,
|
| 31 |
+
max_new_tokens=256
|
| 32 |
)
|
| 33 |
+
print("LLM and pipeline loaded successfully!")
|
| 34 |
+
|
| 35 |
|
| 36 |
+
# --- 2. FastAPI App Setup ---
|
| 37 |
app = FastAPI()
|
| 38 |
|
|
|
|
| 39 |
app.add_middleware(
|
| 40 |
CORSMiddleware,
|
| 41 |
+
allow_origins=["*"],
|
| 42 |
allow_credentials=True,
|
| 43 |
allow_methods=["*"],
|
| 44 |
allow_headers=["*"],
|
|
|
|
| 46 |
|
| 47 |
@app.get("/")
|
| 48 |
def read_root():
|
| 49 |
+
return {"message": "RAG chatbot backend is running with Kalpokoch/QuntizedTinyLama and ChromaDB!"}
|
| 50 |
|
| 51 |
class ChatRequest(BaseModel):
|
| 52 |
question: str
|
|
|
|
| 57 |
if not question:
|
| 58 |
return {"response": "Please ask a question."}
|
| 59 |
|
| 60 |
+
# --- 3. RAG Retrieval using PolicyVectorDB ---
|
| 61 |
+
# Use the search method from your class to find relevant context
|
| 62 |
+
print(f"Searching for context for question: '{question}'")
|
| 63 |
+
search_results = db.search(query_text=question, top_k=3)
|
| 64 |
+
|
| 65 |
+
# Check if any results were found
|
| 66 |
+
if not search_results:
|
| 67 |
+
retrieved_context = "No relevant context found."
|
| 68 |
+
else:
|
| 69 |
+
# Format the retrieved documents into a single context string
|
| 70 |
+
retrieved_context = "\n\n".join([result['text'] for result in search_results])
|
| 71 |
+
|
| 72 |
+
print(f"Retrieved Context:\n{retrieved_context[:500]}...")
|
| 73 |
|
| 74 |
+
# --- 4. Prompt Engineering and Generation ---
|
| 75 |
+
# Build the prompt with the retrieved context
|
| 76 |
prompt = (
|
| 77 |
+
f"<|system|>\nYou are a helpful assistant for NEEPCO policies. "
|
| 78 |
+
f"Use the following context to answer the user's question. If the context doesn't contain the answer, say that.\n"
|
| 79 |
+
f"Context:\n{retrieved_context}</s>\n"
|
| 80 |
+
f"<|user|>\n{question}</s>\n"
|
| 81 |
+
f"<|assistant|>"
|
| 82 |
)
|
| 83 |
|
| 84 |
+
# Generate a response using the pipeline
|
| 85 |
+
try:
|
| 86 |
+
outputs = pipe(prompt)
|
| 87 |
+
reply = outputs[0]['generated_text']
|
| 88 |
+
|
| 89 |
+
# Extract only the assistant's newly generated reply
|
| 90 |
+
assistant_reply = reply.split("<|assistant|>")[1].strip()
|
| 91 |
+
|
| 92 |
+
return {"response": assistant_reply}
|
| 93 |
+
except Exception as e:
|
| 94 |
+
print(f"Error during model inference: {e}")
|
| 95 |
+
return {"response": "Sorry, I encountered an error while generating a response."}
|
| 96 |
|
|
|
app/policy_vector_db.py
CHANGED
|
@@ -1,115 +1,128 @@
|
|
| 1 |
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import chromadb
|
| 3 |
from sentence_transformers import SentenceTransformer
|
| 4 |
-
from typing import List, Dict
|
| 5 |
|
| 6 |
class PolicyVectorDB:
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
self.client = chromadb.PersistentClient(path=
|
| 10 |
self.collection_name = "neepco_dop_policies"
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
self.collection = self.client.get_collection(self.collection_name)
|
| 18 |
-
print("Loaded existing collection")
|
| 19 |
-
except:
|
| 20 |
-
self.collection = self.client.create_collection(
|
| 21 |
-
name=self.collection_name,
|
| 22 |
-
metadata={"description": "NEEPCO DOP Policy chunks"}
|
| 23 |
-
)
|
| 24 |
-
print("Created new collection")
|
| 25 |
|
| 26 |
def _flatten_metadata(self, metadata: Dict) -> Dict:
|
| 27 |
-
"""
|
| 28 |
-
|
| 29 |
-
for key, value in metadata.items():
|
| 30 |
-
if isinstance(value, (dict, list)):
|
| 31 |
-
continue # skip nested fields
|
| 32 |
-
if isinstance(value, (str, int, float, bool)) or value is None:
|
| 33 |
-
flat_meta[key] = value
|
| 34 |
-
else:
|
| 35 |
-
flat_meta[key] = str(value) # fallback to string
|
| 36 |
-
return flat_meta
|
| 37 |
|
| 38 |
def add_chunks(self, chunks: List[Dict]):
|
| 39 |
-
"""
|
| 40 |
-
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
ids = [chunk['id'] for chunk in chunks]
|
| 45 |
-
|
| 46 |
-
# Generate embeddings
|
| 47 |
-
embeddings = self.embedding_model.encode(texts).tolist()
|
| 48 |
-
|
| 49 |
-
# Add to collection
|
| 50 |
-
self.collection.add(
|
| 51 |
-
embeddings=embeddings,
|
| 52 |
-
documents=texts,
|
| 53 |
-
metadatas=metadatas,
|
| 54 |
-
ids=ids
|
| 55 |
-
)
|
| 56 |
-
|
| 57 |
-
print("Successfully added chunks to database!")
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
results = self.collection.query(
|
| 67 |
query_embeddings=query_embedding,
|
| 68 |
n_results=top_k,
|
| 69 |
include=['documents', 'metadatas', 'distances']
|
| 70 |
)
|
| 71 |
|
| 72 |
-
# Format results
|
| 73 |
search_results = []
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
search_results.append({
|
| 76 |
-
'text':
|
| 77 |
'metadata': results['metadatas'][0][i],
|
| 78 |
-
'relevance_score':
|
| 79 |
})
|
| 80 |
-
|
| 81 |
return search_results
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
|
| 97 |
-
|
|
|
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
-
# Example usage
|
| 101 |
if __name__ == "__main__":
|
| 102 |
-
|
| 103 |
-
db = setup_vector_database()
|
| 104 |
-
|
| 105 |
-
# Test search
|
| 106 |
-
query = "Who approves resignation for executives E-7 and above?"
|
| 107 |
-
results = db.search(query, top_k=2)
|
| 108 |
-
|
| 109 |
-
print(f"\nQuery: {query}")
|
| 110 |
-
print("Results:")
|
| 111 |
-
for i, result in enumerate(results, 1):
|
| 112 |
-
print(f"\n{i}. Relevance: {result['relevance_score']:.3f}")
|
| 113 |
-
print(f"Section: {result['metadata'].get('section', 'N/A')}")
|
| 114 |
-
print(f"Authority: {result['metadata'].get('authority', 'N/A')}")
|
| 115 |
-
print(f"Text: {result['text'][:200]}...")
|
|
|
|
| 1 |
import json
|
| 2 |
+
import os
|
| 3 |
+
import shutil
|
| 4 |
+
from typing import List, Dict
|
| 5 |
+
|
| 6 |
import chromadb
|
| 7 |
from sentence_transformers import SentenceTransformer
|
|
|
|
| 8 |
|
| 9 |
class PolicyVectorDB:
|
| 10 |
+
"""Manages the creation and searching of a persistent vector database."""
|
| 11 |
+
def __init__(self, persist_directory: str = "chroma_db"):
|
| 12 |
+
self.client = chromadb.PersistentClient(path=persist_directory)
|
| 13 |
self.collection_name = "neepco_dop_policies"
|
| 14 |
+
self.embedding_model = SentenceTransformer('BAAI/bge-large-en-v1.5', device = 'cpu')
|
| 15 |
+
self.collection = self.client.get_or_create_collection(
|
| 16 |
+
name=self.collection_name,
|
| 17 |
+
metadata={"description": "NEEPCO Delegation of Powers Policy"}
|
| 18 |
+
)
|
| 19 |
+
print(f"Loaded/Created persistent collection '{self.collection_name}' at '{persist_directory}'")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
def _flatten_metadata(self, metadata: Dict) -> Dict:
|
| 22 |
+
"""Ensures all metadata values are strings for ChromaDB compatibility."""
|
| 23 |
+
return {key: str(value) for key, value in metadata.items()}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
def add_chunks(self, chunks: List[Dict]):
|
| 26 |
+
"""Encodes and adds a list of chunk dictionaries to the database."""
|
| 27 |
+
if not chunks:
|
| 28 |
+
print("No chunks provided to add.")
|
| 29 |
+
return
|
| 30 |
|
| 31 |
+
existing_ids = set(self.collection.get(include=[])['ids'])
|
| 32 |
+
new_chunks = [chunk for chunk in chunks if chunk.get('id') not in existing_ids]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
if not new_chunks:
|
| 35 |
+
print("No new chunks to add. All provided chunks already exist in the database.")
|
| 36 |
+
return
|
| 37 |
+
|
| 38 |
+
print(f"Found {len(new_chunks)} new chunks to add.")
|
| 39 |
+
batch_size = 128
|
| 40 |
+
|
| 41 |
+
for i in range(0, len(new_chunks), batch_size):
|
| 42 |
+
batch = new_chunks[i:i + batch_size]
|
| 43 |
+
print(f" - Processing batch {i//batch_size + 1}/{ -(-len(new_chunks) // batch_size) }...")
|
| 44 |
+
|
| 45 |
+
texts = [chunk['text'] for chunk in batch]
|
| 46 |
+
ids = [chunk['id'] for chunk in batch]
|
| 47 |
+
metadatas = [self._flatten_metadata(chunk['metadata']) for chunk in batch]
|
| 48 |
+
|
| 49 |
+
embeddings = self.embedding_model.encode(texts, show_progress_bar=False).tolist()
|
| 50 |
+
self.collection.add(ids=ids, embeddings=embeddings, documents=texts, metadatas=metadatas)
|
| 51 |
|
| 52 |
+
print(f"Successfully added {len(new_chunks)} new chunks to the database!")
|
| 53 |
+
|
| 54 |
+
def search(self, query_text: str, top_k: int = 3) -> List[Dict]:
|
| 55 |
+
"""Searches the collection for a given query text."""
|
| 56 |
+
query_embedding = self.embedding_model.encode([query_text]).tolist()
|
| 57 |
results = self.collection.query(
|
| 58 |
query_embeddings=query_embedding,
|
| 59 |
n_results=top_k,
|
| 60 |
include=['documents', 'metadatas', 'distances']
|
| 61 |
)
|
| 62 |
|
|
|
|
| 63 |
search_results = []
|
| 64 |
+
if not results.get('documents'):
|
| 65 |
+
return []
|
| 66 |
+
|
| 67 |
+
for i, doc in enumerate(results['documents'][0]):
|
| 68 |
+
relevance_score = 1 - results['distances'][0][i]
|
| 69 |
search_results.append({
|
| 70 |
+
'text': doc,
|
| 71 |
'metadata': results['metadatas'][0][i],
|
| 72 |
+
'relevance_score': relevance_score
|
| 73 |
})
|
|
|
|
| 74 |
return search_results
|
| 75 |
|
| 76 |
+
def main():
|
| 77 |
+
"""Main function to build and verify the vector database."""
|
| 78 |
+
INPUT_CHUNKS_PATH = "processed_chunks_final.json"
|
| 79 |
+
PERSIST_DIRECTORY = "policy_vector_db"
|
| 80 |
|
| 81 |
+
if not os.path.exists(INPUT_CHUNKS_PATH):
|
| 82 |
+
print(f"FATAL ERROR: The input chunk file was not found at '{INPUT_CHUNKS_PATH}'")
|
| 83 |
+
print("Please run 'create_chunks.py' first.")
|
| 84 |
+
return
|
| 85 |
+
|
| 86 |
+
if os.path.exists(PERSIST_DIRECTORY):
|
| 87 |
+
print(f"Removing existing database at '{PERSIST_DIRECTORY}' to ensure a clean build.")
|
| 88 |
+
shutil.rmtree(PERSIST_DIRECTORY)
|
| 89 |
+
|
| 90 |
+
print(f"Creating database directory: '{PERSIST_DIRECTORY}'")
|
| 91 |
+
os.makedirs(PERSIST_DIRECTORY, exist_ok=True)
|
| 92 |
+
os.chmod(PERSIST_DIRECTORY, 0o777)
|
| 93 |
+
|
| 94 |
+
print("\nStep 1: Loading processed chunks...")
|
| 95 |
+
with open(INPUT_CHUNKS_PATH, 'r', encoding='utf-8') as f:
|
| 96 |
+
chunks_to_add = json.load(f)
|
| 97 |
+
print(f"Loaded {len(chunks_to_add)} chunks.")
|
| 98 |
|
| 99 |
+
print("\nStep 2: Setting up persistent vector database...")
|
| 100 |
+
db = PolicyVectorDB(persist_directory=PERSIST_DIRECTORY)
|
| 101 |
|
| 102 |
+
print("\nStep 3: Adding chunks to the database...")
|
| 103 |
+
db.add_chunks(chunks_to_add)
|
| 104 |
|
| 105 |
+
print(f"\n✅ Vector database setup complete. Total chunks in DB: {db.collection.count()}")
|
| 106 |
+
print(f"Database is saved in: {os.path.abspath(PERSIST_DIRECTORY)}")
|
| 107 |
|
| 108 |
+
print("\n--- Running Verification Tests ---")
|
| 109 |
+
test_questions = [
|
| 110 |
+
"Who can approve changes to the pay structure?",
|
| 111 |
+
"What is the financial limit for a DGM for works on a limited tender basis?",
|
| 112 |
+
"What's the delegation power of an ED for single tender O&M contracts from an OEM?"
|
| 113 |
+
]
|
| 114 |
+
|
| 115 |
+
for question in test_questions:
|
| 116 |
+
print(f"\n--- Testing Query ---")
|
| 117 |
+
print(f"Query: {question}")
|
| 118 |
+
search_results = db.search(question, top_k=2)
|
| 119 |
+
if search_results:
|
| 120 |
+
for j, result in enumerate(search_results, 1):
|
| 121 |
+
print(f" Result {j} (Relevance: {result['relevance_score']:.4f}):")
|
| 122 |
+
print(f" Text: {result['text'][:300]}...")
|
| 123 |
+
print(f" Metadata: {result['metadata']}")
|
| 124 |
+
else:
|
| 125 |
+
print(" No results found.")
|
| 126 |
|
|
|
|
| 127 |
if __name__ == "__main__":
|
| 128 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
processed_chunks.json
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
requirements.txt
CHANGED
|
@@ -1,5 +1,9 @@
|
|
| 1 |
fastapi
|
| 2 |
uvicorn
|
| 3 |
-
|
| 4 |
sentence-transformers
|
| 5 |
scikit-learn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
fastapi
|
| 2 |
uvicorn
|
| 3 |
+
pydantic
|
| 4 |
sentence-transformers
|
| 5 |
scikit-learn
|
| 6 |
+
torch
|
| 7 |
+
transformers
|
| 8 |
+
accelerate
|
| 9 |
+
bitsandbytes
|