Spaces:
Sleeping
Sleeping
Update app/app.py
Browse files- app/app.py +141 -74
app/app.py
CHANGED
|
@@ -4,6 +4,8 @@ import asyncio
|
|
| 4 |
import logging
|
| 5 |
import uuid
|
| 6 |
import re
|
|
|
|
|
|
|
| 7 |
from fastapi import FastAPI, HTTPException, Request
|
| 8 |
from pydantic import BaseModel
|
| 9 |
from llama_cpp import Llama
|
|
@@ -22,21 +24,28 @@ class RequestIdAdapter(logging.LoggerAdapter):
|
|
| 22 |
logger = logging.getLogger("app")
|
| 23 |
|
| 24 |
# -----------------------------
|
| 25 |
-
# β
Configuration
|
| 26 |
# -----------------------------
|
| 27 |
DB_PERSIST_DIRECTORY = os.getenv("DB_PERSIST_DIRECTORY", "/app/vector_database")
|
| 28 |
CHUNKS_FILE_PATH = os.getenv("CHUNKS_FILE_PATH", "/app/granular_chunks_final.jsonl")
|
| 29 |
MODEL_PATH = os.getenv("MODEL_PATH", "/app/tinyllama_dop_q4_k_m.gguf")
|
| 30 |
-
LLM_TIMEOUT_SECONDS = int(os.getenv("LLM_TIMEOUT_SECONDS", "
|
| 31 |
RELEVANCE_THRESHOLD = float(os.getenv("RELEVANCE_THRESHOLD", "0.3"))
|
| 32 |
TOP_K_SEARCH = int(os.getenv("TOP_K_SEARCH", "3"))
|
| 33 |
TOP_K_CONTEXT = int(os.getenv("TOP_K_CONTEXT", "1"))
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
# -----------------------------
|
| 36 |
# β
Initialize FastAPI App
|
| 37 |
# -----------------------------
|
| 38 |
app = FastAPI(title="NEEPCO DoP RAG Chatbot", version="2.1.0")
|
| 39 |
|
|
|
|
|
|
|
|
|
|
| 40 |
@app.middleware("http")
|
| 41 |
async def add_request_id(request: Request, call_next):
|
| 42 |
request_id = str(uuid.uuid4())
|
|
@@ -67,19 +76,26 @@ except Exception as e:
|
|
| 67 |
db_ready = False
|
| 68 |
|
| 69 |
# -----------------------------
|
| 70 |
-
# β
Load TinyLlama GGUF Model
|
| 71 |
# -----------------------------
|
| 72 |
logger.info(f"Loading GGUF model from: {MODEL_PATH}")
|
| 73 |
try:
|
| 74 |
llm = Llama(
|
| 75 |
model_path=MODEL_PATH,
|
| 76 |
-
n_ctx=
|
| 77 |
-
n_threads=
|
| 78 |
-
n_batch=
|
| 79 |
use_mlock=True,
|
| 80 |
-
verbose=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
)
|
| 82 |
-
logger.info("GGUF model loaded successfully.")
|
| 83 |
model_ready = True
|
| 84 |
except Exception as e:
|
| 85 |
logger.error(f"FATAL: Failed to load GGUF model: {e}", exc_info=True)
|
|
@@ -100,6 +116,49 @@ class Feedback(BaseModel):
|
|
| 100 |
feedback: str
|
| 101 |
comment: str | None = None
|
| 102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
# -----------------------------
|
| 104 |
# β
Endpoints
|
| 105 |
# -----------------------------
|
|
@@ -108,30 +167,21 @@ def get_logger_adapter(request: Request):
|
|
| 108 |
|
| 109 |
@app.get("/")
|
| 110 |
async def root():
|
| 111 |
-
return {"status": "β
Server is running."}
|
| 112 |
|
| 113 |
@app.get("/health")
|
| 114 |
async def health_check():
|
| 115 |
status = {
|
| 116 |
"status": "ok",
|
| 117 |
"database_status": "ready" if db_ready else "error",
|
| 118 |
-
"model_status": "ready" if model_ready else "error"
|
|
|
|
|
|
|
| 119 |
}
|
| 120 |
if not db_ready or not model_ready:
|
| 121 |
raise HTTPException(status_code=503, detail=status)
|
| 122 |
return status
|
| 123 |
|
| 124 |
-
async def generate_llm_response(prompt: str, request_id: str):
|
| 125 |
-
loop = asyncio.get_running_loop()
|
| 126 |
-
response = await loop.run_in_executor(
|
| 127 |
-
None,
|
| 128 |
-
lambda: llm(prompt, max_tokens=2048, stop=["###", "Question:", "Context:", "</s>"], temperature=0.05, echo=False)
|
| 129 |
-
)
|
| 130 |
-
answer = response["choices"][0]["text"].strip()
|
| 131 |
-
if not answer:
|
| 132 |
-
raise ValueError("Empty response from LLM")
|
| 133 |
-
return answer
|
| 134 |
-
|
| 135 |
@app.post("/chat")
|
| 136 |
async def chat(query: Query, request: Request):
|
| 137 |
adapter = get_logger_adapter(request)
|
|
@@ -142,9 +192,9 @@ async def chat(query: Query, request: Request):
|
|
| 142 |
if question_lower in greeting_keywords:
|
| 143 |
adapter.info(f"Handling a greeting or introductory query: '{query.question}'")
|
| 144 |
intro_message = (
|
| 145 |
-
"Hello! I am an AI assistant specifically trained on NEEPCO's Delegation of Powers (DoP) policy document. "
|
| 146 |
-
"My purpose is to help you find accurate information and answer questions based on this specific dataset. "
|
| 147 |
-
"I am currently running on a
|
| 148 |
)
|
| 149 |
return {
|
| 150 |
"request_id": getattr(request.state, 'request_id', 'N/A'),
|
|
@@ -159,75 +209,86 @@ async def chat(query: Query, request: Request):
|
|
| 159 |
|
| 160 |
adapter.info(f"Received query: '{query.question}'")
|
| 161 |
|
| 162 |
-
|
| 163 |
-
|
|
|
|
|
|
|
| 164 |
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
|
|
|
| 175 |
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
You are a precise and factual assistant for NEEPCO's Delegation of Powers (DoP) policy.
|
| 183 |
Your task is to answer the user's question based ONLY on the provided context.
|
| 184 |
-
|
| 185 |
- **Formatting Rule:** If the answer contains a list of items or steps, you **MUST** separate each item with a pipe symbol (`|`). For example: `First item|Second item|Third item`.
|
| 186 |
- **Content Rule:** If the information is not in the provided context, you **MUST** reply with the exact phrase: "The provided policy context does not contain information on this topic."
|
|
|
|
| 187 |
</s>
|
| 188 |
<|user|>
|
| 189 |
### Relevant Context:
|
| 190 |
```
|
| 191 |
{context}
|
| 192 |
```
|
| 193 |
-
|
| 194 |
### Question:
|
| 195 |
{query.question}
|
| 196 |
</s>
|
| 197 |
<|assistant|>
|
| 198 |
-
###
|
| 199 |
"""
|
| 200 |
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
except Exception as e:
|
| 229 |
-
adapter.error(f"An unexpected error occurred
|
| 230 |
-
answer = "Sorry, an unexpected error occurred
|
| 231 |
|
| 232 |
adapter.info(f"Final answer prepared. Returning to client.")
|
| 233 |
return {
|
|
@@ -251,3 +312,9 @@ async def collect_feedback(feedback: Feedback, request: Request):
|
|
| 251 |
}
|
| 252 |
adapter.info(json.dumps(feedback_log))
|
| 253 |
return {"status": "β
Feedback recorded. Thank you!"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import logging
|
| 5 |
import uuid
|
| 6 |
import re
|
| 7 |
+
import multiprocessing as mp
|
| 8 |
+
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
|
| 9 |
from fastapi import FastAPI, HTTPException, Request
|
| 10 |
from pydantic import BaseModel
|
| 11 |
from llama_cpp import Llama
|
|
|
|
| 24 |
logger = logging.getLogger("app")
|
| 25 |
|
| 26 |
# -----------------------------
|
| 27 |
+
# β
Configuration - Optimized for CPU
|
| 28 |
# -----------------------------
|
| 29 |
DB_PERSIST_DIRECTORY = os.getenv("DB_PERSIST_DIRECTORY", "/app/vector_database")
|
| 30 |
CHUNKS_FILE_PATH = os.getenv("CHUNKS_FILE_PATH", "/app/granular_chunks_final.jsonl")
|
| 31 |
MODEL_PATH = os.getenv("MODEL_PATH", "/app/tinyllama_dop_q4_k_m.gguf")
|
| 32 |
+
LLM_TIMEOUT_SECONDS = int(os.getenv("LLM_TIMEOUT_SECONDS", "60")) # Reduced timeout
|
| 33 |
RELEVANCE_THRESHOLD = float(os.getenv("RELEVANCE_THRESHOLD", "0.3"))
|
| 34 |
TOP_K_SEARCH = int(os.getenv("TOP_K_SEARCH", "3"))
|
| 35 |
TOP_K_CONTEXT = int(os.getenv("TOP_K_CONTEXT", "1"))
|
| 36 |
|
| 37 |
+
# CPU Optimization settings
|
| 38 |
+
CPU_COUNT = mp.cpu_count()
|
| 39 |
+
logger.info(f"Detected {CPU_COUNT} CPU cores")
|
| 40 |
+
|
| 41 |
# -----------------------------
|
| 42 |
# β
Initialize FastAPI App
|
| 43 |
# -----------------------------
|
| 44 |
app = FastAPI(title="NEEPCO DoP RAG Chatbot", version="2.1.0")
|
| 45 |
|
| 46 |
+
# Thread pool for async operations
|
| 47 |
+
thread_executor = ThreadPoolExecutor(max_workers=CPU_COUNT * 2)
|
| 48 |
+
|
| 49 |
@app.middleware("http")
|
| 50 |
async def add_request_id(request: Request, call_next):
|
| 51 |
request_id = str(uuid.uuid4())
|
|
|
|
| 76 |
db_ready = False
|
| 77 |
|
| 78 |
# -----------------------------
|
| 79 |
+
# β
Load TinyLlama GGUF Model - Optimized
|
| 80 |
# -----------------------------
|
| 81 |
logger.info(f"Loading GGUF model from: {MODEL_PATH}")
|
| 82 |
try:
|
| 83 |
llm = Llama(
|
| 84 |
model_path=MODEL_PATH,
|
| 85 |
+
n_ctx=2048, # Reduced context window for speed
|
| 86 |
+
n_threads=CPU_COUNT, # Use all CPU cores
|
| 87 |
+
n_batch=256, # Optimized batch size
|
| 88 |
use_mlock=True,
|
| 89 |
+
verbose=False,
|
| 90 |
+
# Additional optimizations
|
| 91 |
+
n_gpu_layers=0, # Force CPU only
|
| 92 |
+
rope_scaling_type=-1, # Disable rope scaling for speed
|
| 93 |
+
use_mmap=True, # Enable memory mapping
|
| 94 |
+
low_vram=False, # We're on CPU
|
| 95 |
+
# CPU-specific optimizations
|
| 96 |
+
numa=True, # Enable NUMA awareness if available
|
| 97 |
)
|
| 98 |
+
logger.info("GGUF model loaded successfully with CPU optimizations.")
|
| 99 |
model_ready = True
|
| 100 |
except Exception as e:
|
| 101 |
logger.error(f"FATAL: Failed to load GGUF model: {e}", exc_info=True)
|
|
|
|
| 116 |
feedback: str
|
| 117 |
comment: str | None = None
|
| 118 |
|
| 119 |
+
# -----------------------------
|
| 120 |
+
# β
Optimized LLM Generation
|
| 121 |
+
# -----------------------------
|
| 122 |
+
async def generate_llm_response(prompt: str, request_id: str):
|
| 123 |
+
"""Optimized LLM response generation with better CPU utilization."""
|
| 124 |
+
loop = asyncio.get_running_loop()
|
| 125 |
+
|
| 126 |
+
def generate_response():
|
| 127 |
+
return llm(
|
| 128 |
+
prompt,
|
| 129 |
+
max_tokens=1024, # Reduced for faster generation
|
| 130 |
+
stop=["###", "Question:", "Context:", "</s>", "\n\n###"],
|
| 131 |
+
temperature=0.05,
|
| 132 |
+
echo=False,
|
| 133 |
+
# CPU optimizations
|
| 134 |
+
repeat_penalty=1.1,
|
| 135 |
+
top_p=0.9,
|
| 136 |
+
top_k=40,
|
| 137 |
+
# Faster inference settings
|
| 138 |
+
typical_p=1.0,
|
| 139 |
+
mirostat_mode=0, # Disable for speed
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
# Use thread executor for better concurrency
|
| 143 |
+
response = await loop.run_in_executor(thread_executor, generate_response)
|
| 144 |
+
|
| 145 |
+
answer = response["choices"][0]["text"].strip()
|
| 146 |
+
if not answer:
|
| 147 |
+
raise ValueError("Empty response from LLM")
|
| 148 |
+
return answer
|
| 149 |
+
|
| 150 |
+
# -----------------------------
|
| 151 |
+
# β
Optimized Search Function
|
| 152 |
+
# -----------------------------
|
| 153 |
+
async def perform_optimized_search(query_text: str):
|
| 154 |
+
"""Perform vector search in a separate thread to avoid blocking."""
|
| 155 |
+
loop = asyncio.get_running_loop()
|
| 156 |
+
|
| 157 |
+
def search_db():
|
| 158 |
+
return db.search(query_text, top_k=TOP_K_SEARCH)
|
| 159 |
+
|
| 160 |
+
return await loop.run_in_executor(thread_executor, search_db)
|
| 161 |
+
|
| 162 |
# -----------------------------
|
| 163 |
# β
Endpoints
|
| 164 |
# -----------------------------
|
|
|
|
| 167 |
|
| 168 |
@app.get("/")
|
| 169 |
async def root():
|
| 170 |
+
return {"status": "β
Server is running.", "cpu_cores": CPU_COUNT}
|
| 171 |
|
| 172 |
@app.get("/health")
|
| 173 |
async def health_check():
|
| 174 |
status = {
|
| 175 |
"status": "ok",
|
| 176 |
"database_status": "ready" if db_ready else "error",
|
| 177 |
+
"model_status": "ready" if model_ready else "error",
|
| 178 |
+
"cpu_cores": CPU_COUNT,
|
| 179 |
+
"optimization": "enabled"
|
| 180 |
}
|
| 181 |
if not db_ready or not model_ready:
|
| 182 |
raise HTTPException(status_code=503, detail=status)
|
| 183 |
return status
|
| 184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
@app.post("/chat")
|
| 186 |
async def chat(query: Query, request: Request):
|
| 187 |
adapter = get_logger_adapter(request)
|
|
|
|
| 192 |
if question_lower in greeting_keywords:
|
| 193 |
adapter.info(f"Handling a greeting or introductory query: '{query.question}'")
|
| 194 |
intro_message = (
|
| 195 |
+
f"Hello! I am an AI assistant specifically trained on NEEPCO's Delegation of Powers (DoP) policy document. "
|
| 196 |
+
f"My purpose is to help you find accurate information and answer questions based on this specific dataset. "
|
| 197 |
+
f"I am currently running optimized on a {CPU_COUNT}-core CPU environment. How can I assist you with the DoP policy today?"
|
| 198 |
)
|
| 199 |
return {
|
| 200 |
"request_id": getattr(request.state, 'request_id', 'N/A'),
|
|
|
|
| 209 |
|
| 210 |
adapter.info(f"Received query: '{query.question}'")
|
| 211 |
|
| 212 |
+
try:
|
| 213 |
+
# 1. Perform parallel search and prepare context
|
| 214 |
+
search_task = perform_optimized_search(query.question)
|
| 215 |
+
search_results = await search_task
|
| 216 |
|
| 217 |
+
if not search_results:
|
| 218 |
+
adapter.warning("No relevant context found in vector DB.")
|
| 219 |
+
return {
|
| 220 |
+
"request_id": request.state.request_id,
|
| 221 |
+
"question": query.question,
|
| 222 |
+
"context_used": "No relevant context found.",
|
| 223 |
+
"answer": "Sorry, I could not find a relevant policy to answer that question. Please try rephrasing."
|
| 224 |
+
}
|
| 225 |
+
|
| 226 |
+
scores = [f"{result['relevance_score']:.4f}" for result in search_results]
|
| 227 |
+
adapter.info(f"Found {len(search_results)} relevant chunks with scores: {scores}")
|
| 228 |
|
| 229 |
+
# 2. Prepare Context (limit context size for faster processing)
|
| 230 |
+
context_chunks = [result['text'] for result in search_results[:TOP_K_CONTEXT]]
|
| 231 |
+
context = "\n---\n".join(context_chunks)
|
| 232 |
+
|
| 233 |
+
# Truncate context if too long for faster processing
|
| 234 |
+
max_context_length = 1500 # Reduced for faster inference
|
| 235 |
+
if len(context) > max_context_length:
|
| 236 |
+
context = context[:max_context_length] + "..."
|
| 237 |
+
|
| 238 |
+
# 3. Build optimized prompt
|
| 239 |
+
prompt = f"""<|system|>
|
| 240 |
You are a precise and factual assistant for NEEPCO's Delegation of Powers (DoP) policy.
|
| 241 |
Your task is to answer the user's question based ONLY on the provided context.
|
|
|
|
| 242 |
- **Formatting Rule:** If the answer contains a list of items or steps, you **MUST** separate each item with a pipe symbol (`|`). For example: `First item|Second item|Third item`.
|
| 243 |
- **Content Rule:** If the information is not in the provided context, you **MUST** reply with the exact phrase: "The provided policy context does not contain information on this topic."
|
| 244 |
+
- **Brevity Rule:** Keep your answer concise and to the point.
|
| 245 |
</s>
|
| 246 |
<|user|>
|
| 247 |
### Relevant Context:
|
| 248 |
```
|
| 249 |
{context}
|
| 250 |
```
|
|
|
|
| 251 |
### Question:
|
| 252 |
{query.question}
|
| 253 |
</s>
|
| 254 |
<|assistant|>
|
| 255 |
+
### Answer:
|
| 256 |
"""
|
| 257 |
|
| 258 |
+
# 4. Generate Response with timeout
|
| 259 |
+
answer = "An error occurred while processing your request."
|
| 260 |
+
try:
|
| 261 |
+
adapter.info("Sending prompt to LLM for generation...")
|
| 262 |
+
raw_answer = await asyncio.wait_for(
|
| 263 |
+
generate_llm_response(prompt, request.state.request_id),
|
| 264 |
+
timeout=LLM_TIMEOUT_SECONDS
|
| 265 |
+
)
|
| 266 |
+
adapter.info(f"LLM generation successful. Raw response: {raw_answer[:100]}...")
|
| 267 |
+
|
| 268 |
+
# --- POST-PROCESSING LOGIC ---
|
| 269 |
+
# Check if the model used the pipe separator, indicating a list.
|
| 270 |
+
if '|' in raw_answer:
|
| 271 |
+
adapter.info("Pipe separator found. Formatting response as a bulleted list.")
|
| 272 |
+
# Split the string into a list of items
|
| 273 |
+
items = raw_answer.split('|')
|
| 274 |
+
# Clean up each item and format it as a bullet point
|
| 275 |
+
cleaned_items = [f"β’ {item.strip()}" for item in items if item.strip()]
|
| 276 |
+
# Join them back together with newlines
|
| 277 |
+
answer = "\n".join(cleaned_items)
|
| 278 |
+
else:
|
| 279 |
+
# If no separator, use the answer as is.
|
| 280 |
+
answer = raw_answer
|
| 281 |
+
|
| 282 |
+
except asyncio.TimeoutError:
|
| 283 |
+
adapter.warning(f"LLM generation timed out after {LLM_TIMEOUT_SECONDS} seconds.")
|
| 284 |
+
answer = "Sorry, the request took too long to process. Please try again with a simpler question."
|
| 285 |
+
except Exception as e:
|
| 286 |
+
adapter.error(f"An unexpected error occurred during LLM generation: {e}", exc_info=True)
|
| 287 |
+
answer = "Sorry, an unexpected error occurred while generating a response."
|
| 288 |
+
|
| 289 |
except Exception as e:
|
| 290 |
+
adapter.error(f"An unexpected error occurred: {e}", exc_info=True)
|
| 291 |
+
answer = "Sorry, an unexpected error occurred. Please try again."
|
| 292 |
|
| 293 |
adapter.info(f"Final answer prepared. Returning to client.")
|
| 294 |
return {
|
|
|
|
| 312 |
}
|
| 313 |
adapter.info(json.dumps(feedback_log))
|
| 314 |
return {"status": "β
Feedback recorded. Thank you!"}
|
| 315 |
+
|
| 316 |
+
# Graceful shutdown
|
| 317 |
+
@app.on_event("shutdown")
|
| 318 |
+
async def shutdown_event():
|
| 319 |
+
thread_executor.shutdown(wait=True)
|
| 320 |
+
logger.info("Application shutdown complete.")
|