Spaces:
Running
Running
Update app/policy_vector_db.py
Browse files- app/policy_vector_db.py +40 -263
app/policy_vector_db.py
CHANGED
|
@@ -1,16 +1,11 @@
|
|
| 1 |
import os
|
| 2 |
import json
|
| 3 |
import torch
|
| 4 |
-
import
|
| 5 |
-
import hashlib
|
| 6 |
-
from typing import List, Dict, Optional, Tuple
|
| 7 |
from sentence_transformers import SentenceTransformer
|
| 8 |
import chromadb
|
| 9 |
from chromadb.config import Settings
|
| 10 |
import logging
|
| 11 |
-
import multiprocessing as mp
|
| 12 |
-
from concurrent.futures import ThreadPoolExecutor
|
| 13 |
-
import numpy as np
|
| 14 |
|
| 15 |
# --- Basic Logging Setup ---
|
| 16 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
|
@@ -18,50 +13,28 @@ logger = logging.getLogger(__name__)
|
|
| 18 |
|
| 19 |
class PolicyVectorDB:
|
| 20 |
"""
|
| 21 |
-
|
| 22 |
-
|
| 23 |
"""
|
| 24 |
def __init__(self, persist_directory: str, top_k_default: int = 5, relevance_threshold: float = 0.5):
|
| 25 |
self.persist_directory = persist_directory
|
| 26 |
self.client = chromadb.PersistentClient(path=persist_directory, settings=Settings(allow_reset=True))
|
| 27 |
self.collection_name = "neepco_dop_policies"
|
| 28 |
|
| 29 |
-
#
|
| 30 |
-
|
| 31 |
-
torch.set_num_threads(self.cpu_count)
|
| 32 |
-
|
| 33 |
-
logger.info(f"Detected {self.cpu_count} CPU cores, optimizing threading...")
|
| 34 |
logger.info("Loading embedding model 'BAAI/bge-large-en-v1.5'. This may take a moment...")
|
| 35 |
-
|
| 36 |
-
# Optimize model loading for CPU
|
| 37 |
-
self.embedding_model = SentenceTransformer(
|
| 38 |
-
'BAAI/bge-large-en-v1.5',
|
| 39 |
-
device='cpu',
|
| 40 |
-
# Use all available CPU cores for inference
|
| 41 |
-
model_kwargs={'torch_dtype': torch.float32}
|
| 42 |
-
)
|
| 43 |
-
|
| 44 |
-
# Set model to use optimized CPU inference
|
| 45 |
-
self.embedding_model.max_seq_length = 512 # Reduce context length for speed
|
| 46 |
-
|
| 47 |
logger.info("Embedding model loaded successfully.")
|
| 48 |
|
| 49 |
-
self.collection = None
|
| 50 |
self.top_k_default = top_k_default
|
| 51 |
self.relevance_threshold = relevance_threshold
|
| 52 |
-
|
| 53 |
-
# Thread pool for parallel processing
|
| 54 |
-
self.thread_pool = ThreadPoolExecutor(max_workers=self.cpu_count)
|
| 55 |
-
|
| 56 |
-
# Add monetary normalization for queries
|
| 57 |
-
self.money_patterns = {
|
| 58 |
-
r'(\d+(?:,\d+)*(?:\.\d+)?)\s*crore': lambda x: float(x.replace(',', '')) * 1e7,
|
| 59 |
-
r'(\d+(?:,\d+)*(?:\.\d+)?)\s*lakh': lambda x: float(x.replace(',', '')) * 1e5,
|
| 60 |
-
r'₹\s*(\d+(?:,\d+)*(?:\.\d+)?)': lambda x: float(x.replace(',', ''))
|
| 61 |
-
}
|
| 62 |
|
| 63 |
def _get_collection(self):
|
| 64 |
-
"""
|
|
|
|
|
|
|
| 65 |
if self.collection is None:
|
| 66 |
self.collection = self.client.get_or_create_collection(
|
| 67 |
name=self.collection_name,
|
|
@@ -70,90 +43,13 @@ class PolicyVectorDB:
|
|
| 70 |
return self.collection
|
| 71 |
|
| 72 |
def _flatten_metadata(self, metadata: Dict) -> Dict:
|
| 73 |
-
"""Ensures all metadata values are strings, as required by ChromaDB."""
|
| 74 |
-
|
| 75 |
-
for key, value in metadata.items():
|
| 76 |
-
if isinstance(value, (dict, list)):
|
| 77 |
-
# Convert complex structures to JSON strings
|
| 78 |
-
flattened[key] = json.dumps(value, ensure_ascii=False)
|
| 79 |
-
elif value is not None:
|
| 80 |
-
flattened[key] = str(value)
|
| 81 |
-
return flattened
|
| 82 |
-
|
| 83 |
-
def _extract_query_entities(self, query: str) -> Dict[str, any]:
|
| 84 |
-
"""Extract structured entities from user queries for better filtering."""
|
| 85 |
-
entities = {
|
| 86 |
-
'monetary_values': [],
|
| 87 |
-
'roles': [],
|
| 88 |
-
'sections': [],
|
| 89 |
-
'keywords': []
|
| 90 |
-
}
|
| 91 |
-
|
| 92 |
-
# Extract monetary amounts
|
| 93 |
-
for pattern, converter in self.money_patterns.items():
|
| 94 |
-
matches = re.finditer(pattern, query, re.IGNORECASE)
|
| 95 |
-
for match in matches:
|
| 96 |
-
try:
|
| 97 |
-
value = converter(match.group(1))
|
| 98 |
-
entities['monetary_values'].append(value)
|
| 99 |
-
except:
|
| 100 |
-
pass
|
| 101 |
-
|
| 102 |
-
# Extract common roles
|
| 103 |
-
role_patterns = [
|
| 104 |
-
r'\b(CMD|Chairman|Managing Director)\b',
|
| 105 |
-
r'\b(Director|D\([PT]\)|D\(P\)|D\(T\))\b',
|
| 106 |
-
r'\b(ED|Executive Director)\b',
|
| 107 |
-
r'\b(CGM|Chief General Manager)\b',
|
| 108 |
-
r'\b(GM|General Manager)\b',
|
| 109 |
-
r'\b(DGM|Deputy General Manager)\b',
|
| 110 |
-
r'\b(Sr\.?\s*M|Senior Manager)\b'
|
| 111 |
-
]
|
| 112 |
-
|
| 113 |
-
for pattern in role_patterns:
|
| 114 |
-
matches = re.finditer(pattern, query, re.IGNORECASE)
|
| 115 |
-
entities['roles'].extend([match.group() for match in matches])
|
| 116 |
-
|
| 117 |
-
# Extract section references
|
| 118 |
-
section_matches = re.finditer(r'\b(Section|Annexure)\s*([IVX]+|[A-Z])\b', query, re.IGNORECASE)
|
| 119 |
-
entities['sections'].extend([match.group() for match in section_matches])
|
| 120 |
-
|
| 121 |
-
return entities
|
| 122 |
-
|
| 123 |
-
def _encode_batch_parallel(self, texts: List[str]) -> np.ndarray:
|
| 124 |
-
"""Parallel encoding of text batches for better CPU utilization."""
|
| 125 |
-
# Split texts into smaller batches for parallel processing
|
| 126 |
-
batch_size = max(1, len(texts) // self.cpu_count)
|
| 127 |
-
if len(texts) <= batch_size:
|
| 128 |
-
return self.embedding_model.encode(
|
| 129 |
-
texts,
|
| 130 |
-
normalize_embeddings=True,
|
| 131 |
-
show_progress_bar=False,
|
| 132 |
-
batch_size=32, # Optimize batch size for CPU
|
| 133 |
-
convert_to_numpy=True
|
| 134 |
-
)
|
| 135 |
-
|
| 136 |
-
# Process in parallel batches
|
| 137 |
-
batches = [texts[i:i + batch_size] for i in range(0, len(texts), batch_size)]
|
| 138 |
-
|
| 139 |
-
def encode_batch(batch):
|
| 140 |
-
return self.embedding_model.encode(
|
| 141 |
-
batch,
|
| 142 |
-
normalize_embeddings=True,
|
| 143 |
-
show_progress_bar=False,
|
| 144 |
-
batch_size=16,
|
| 145 |
-
convert_to_numpy=True
|
| 146 |
-
)
|
| 147 |
-
|
| 148 |
-
# Use thread pool for parallel encoding
|
| 149 |
-
futures = [self.thread_pool.submit(encode_batch, batch) for batch in batches]
|
| 150 |
-
results = [future.result() for future in futures]
|
| 151 |
-
|
| 152 |
-
# Concatenate results
|
| 153 |
-
return np.vstack(results) if results else np.array([])
|
| 154 |
|
| 155 |
def add_chunks(self, chunks: List[Dict]):
|
| 156 |
-
"""
|
|
|
|
|
|
|
| 157 |
collection = self._get_collection()
|
| 158 |
if not chunks:
|
| 159 |
logger.info("No chunks provided to add.")
|
|
@@ -174,9 +70,8 @@ class PolicyVectorDB:
|
|
| 174 |
|
| 175 |
logger.info(f"Adding {len(new_chunks)} new chunks to the vector database...")
|
| 176 |
|
| 177 |
-
#
|
| 178 |
-
batch_size =
|
| 179 |
-
|
| 180 |
for i in range(0, len(new_chunks), batch_size):
|
| 181 |
batch = new_chunks[i:i + batch_size]
|
| 182 |
|
|
@@ -184,168 +79,56 @@ class PolicyVectorDB:
|
|
| 184 |
texts = [chunk['text'] for chunk in batch]
|
| 185 |
metadatas = [self._flatten_metadata(chunk.get('metadata', {})) for chunk in batch]
|
| 186 |
|
| 187 |
-
#
|
| 188 |
-
embeddings = self.
|
| 189 |
|
| 190 |
collection.add(ids=ids, embeddings=embeddings, documents=texts, metadatas=metadatas)
|
| 191 |
logger.info(f"Added batch {i//batch_size + 1}/{(len(new_chunks) + batch_size - 1) // batch_size}")
|
| 192 |
|
| 193 |
logger.info(f"Finished adding {len(new_chunks)} chunks.")
|
| 194 |
|
| 195 |
-
def search(self, query_text: str, top_k: int = None
|
| 196 |
"""
|
| 197 |
-
|
| 198 |
-
|
| 199 |
"""
|
| 200 |
collection = self._get_collection()
|
| 201 |
|
| 202 |
-
#
|
| 203 |
-
entities = self._extract_query_entities(query_text)
|
| 204 |
-
|
| 205 |
-
# Build metadata filters
|
| 206 |
-
where_conditions = {}
|
| 207 |
-
if filters:
|
| 208 |
-
where_conditions.update(filters)
|
| 209 |
-
|
| 210 |
-
# Add entity-based filters
|
| 211 |
-
if entities['roles']:
|
| 212 |
-
# Filter by role if mentioned in query
|
| 213 |
-
where_conditions["role"] = {"$in": entities['roles']}
|
| 214 |
-
|
| 215 |
-
if entities['sections']:
|
| 216 |
-
# Filter by section if mentioned
|
| 217 |
-
where_conditions["section"] = {"$in": [s.split()[-1] for s in entities['sections']]}
|
| 218 |
-
|
| 219 |
instructed_query = f"Represent this sentence for searching relevant passages: {query_text}"
|
| 220 |
|
| 221 |
-
#
|
| 222 |
-
query_embedding = self.embedding_model.encode(
|
| 223 |
-
[instructed_query],
|
| 224 |
-
normalize_embeddings=True,
|
| 225 |
-
show_progress_bar=False,
|
| 226 |
-
batch_size=1,
|
| 227 |
-
convert_to_numpy=True
|
| 228 |
-
).tolist()
|
| 229 |
|
| 230 |
k = top_k if top_k is not None else self.top_k_default
|
| 231 |
|
| 232 |
-
#
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
if where_conditions:
|
| 240 |
-
search_params["where"] = where_conditions
|
| 241 |
-
|
| 242 |
-
results = collection.query(**search_params)
|
| 243 |
|
| 244 |
search_results = []
|
| 245 |
if results and results.get('documents') and results['documents'][0]:
|
| 246 |
for i, doc in enumerate(results['documents'][0]):
|
|
|
|
| 247 |
relevance_score = 1 - results['distances'][0][i]
|
| 248 |
|
| 249 |
if relevance_score >= self.relevance_threshold:
|
| 250 |
-
|
| 251 |
'text': doc,
|
| 252 |
'metadata': results['metadatas'][0][i],
|
| 253 |
'relevance_score': relevance_score
|
| 254 |
-
}
|
| 255 |
-
|
| 256 |
-
# Add monetary filtering if amounts mentioned in query
|
| 257 |
-
if entities['monetary_values'] and 'limit_normalized' in results['metadatas'][0][i]:
|
| 258 |
-
try:
|
| 259 |
-
chunk_limit = float(results['metadatas'][0][i]['limit_normalized'])
|
| 260 |
-
query_amount = max(entities['monetary_values'])
|
| 261 |
-
|
| 262 |
-
# Boost relevance if the limit is appropriate for the query amount
|
| 263 |
-
if chunk_limit >= query_amount:
|
| 264 |
-
result['relevance_score'] += 0.1 # Small boost for relevant limits
|
| 265 |
-
except:
|
| 266 |
-
pass
|
| 267 |
-
|
| 268 |
-
search_results.append(result)
|
| 269 |
-
|
| 270 |
-
return sorted(search_results, key=lambda x: x['relevance_score'], reverse=True)[:k]
|
| 271 |
-
|
| 272 |
-
def search_with_context(self, query_text: str, top_k: int = None, include_related: bool = True) -> List[Dict]:
|
| 273 |
-
"""
|
| 274 |
-
Search with automatic inclusion of related/parent chunks for better context.
|
| 275 |
-
"""
|
| 276 |
-
primary_results = self.search(query_text, top_k)
|
| 277 |
-
|
| 278 |
-
if not include_related or not primary_results:
|
| 279 |
-
return primary_results
|
| 280 |
-
|
| 281 |
-
# Find related chunks based on parent_id relationships
|
| 282 |
-
related_ids = set()
|
| 283 |
-
for result in primary_results:
|
| 284 |
-
metadata = result['metadata']
|
| 285 |
-
parent_id = metadata.get('parent_id')
|
| 286 |
-
if parent_id:
|
| 287 |
-
related_ids.add(parent_id)
|
| 288 |
-
|
| 289 |
-
if related_ids:
|
| 290 |
-
collection = self._get_collection()
|
| 291 |
-
try:
|
| 292 |
-
related_chunks = collection.get(
|
| 293 |
-
ids=list(related_ids),
|
| 294 |
-
include=["documents", "metadatas"]
|
| 295 |
-
)
|
| 296 |
-
|
| 297 |
-
for i, doc in enumerate(related_chunks['documents']):
|
| 298 |
-
primary_results.append({
|
| 299 |
-
'text': doc,
|
| 300 |
-
'metadata': related_chunks['metadatas'][i],
|
| 301 |
-
'relevance_score': 0.3, # Lower score for context
|
| 302 |
-
'is_context': True
|
| 303 |
})
|
| 304 |
-
except Exception as e:
|
| 305 |
-
logger.warning(f"Could not retrieve related chunks: {e}")
|
| 306 |
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
def search_by_amount(self, amount: float, comparison: str = ">=", top_k: int = None) -> List[Dict]:
|
| 310 |
-
"""Search for delegation limits based on monetary amount."""
|
| 311 |
-
collection = self._get_collection()
|
| 312 |
-
|
| 313 |
-
where_condition = {}
|
| 314 |
-
if comparison == ">=":
|
| 315 |
-
where_condition = {"limit_normalized": {"$gte": amount}}
|
| 316 |
-
elif comparison == "<=":
|
| 317 |
-
where_condition = {"limit_normalized": {"$lte": amount}}
|
| 318 |
-
elif comparison == "==":
|
| 319 |
-
where_condition = {"limit_normalized": {"$eq": amount}}
|
| 320 |
-
|
| 321 |
-
try:
|
| 322 |
-
results = collection.get(
|
| 323 |
-
where=where_condition,
|
| 324 |
-
include=["documents", "metadatas"]
|
| 325 |
-
)
|
| 326 |
-
|
| 327 |
-
search_results = []
|
| 328 |
-
if results and results.get('documents'):
|
| 329 |
-
for i, doc in enumerate(results['documents']):
|
| 330 |
-
search_results.append({
|
| 331 |
-
'text': doc,
|
| 332 |
-
'metadata': results['metadatas'][i],
|
| 333 |
-
'relevance_score': 1.0 # Perfect match for structured query
|
| 334 |
-
})
|
| 335 |
-
|
| 336 |
-
k = top_k if top_k is not None else self.top_k_default
|
| 337 |
-
return search_results[:k]
|
| 338 |
-
except Exception as e:
|
| 339 |
-
logger.warning(f"Error in search_by_amount: {e}")
|
| 340 |
-
return []
|
| 341 |
-
|
| 342 |
-
def __del__(self):
|
| 343 |
-
"""Cleanup thread pool on deletion."""
|
| 344 |
-
if hasattr(self, 'thread_pool'):
|
| 345 |
-
self.thread_pool.shutdown(wait=False)
|
| 346 |
|
| 347 |
def ensure_db_populated(db_instance: PolicyVectorDB, chunks_file_path: str) -> bool:
|
| 348 |
-
"""
|
|
|
|
|
|
|
| 349 |
try:
|
| 350 |
if db_instance._get_collection().count() > 0:
|
| 351 |
logger.info("Vector database already contains data. Skipping population.")
|
|
@@ -368,15 +151,9 @@ def ensure_db_populated(db_instance: PolicyVectorDB, chunks_file_path: str) -> b
|
|
| 368 |
logger.warning(f"Chunks file at '{chunks_file_path}' is empty or invalid. No data to add.")
|
| 369 |
return False
|
| 370 |
|
| 371 |
-
|
| 372 |
-
batch_size = 500
|
| 373 |
-
for i in range(0, len(chunks_to_add), batch_size):
|
| 374 |
-
batch = chunks_to_add[i:i + batch_size]
|
| 375 |
-
db_instance.add_chunks(batch)
|
| 376 |
-
logger.info(f"Processed batch {i//batch_size + 1}/{(len(chunks_to_add) + batch_size - 1) // batch_size}")
|
| 377 |
-
|
| 378 |
logger.info("Vector database population attempt complete.")
|
| 379 |
return True
|
| 380 |
except Exception as e:
|
| 381 |
logger.error(f"An error occurred during DB population check: {e}", exc_info=True)
|
| 382 |
-
return False
|
|
|
|
| 1 |
import os
|
| 2 |
import json
|
| 3 |
import torch
|
| 4 |
+
from typing import List, Dict
|
|
|
|
|
|
|
| 5 |
from sentence_transformers import SentenceTransformer
|
| 6 |
import chromadb
|
| 7 |
from chromadb.config import Settings
|
| 8 |
import logging
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# --- Basic Logging Setup ---
|
| 11 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
|
|
|
| 13 |
|
| 14 |
class PolicyVectorDB:
|
| 15 |
"""
|
| 16 |
+
Manages the connection, population, and querying of a ChromaDB vector database
|
| 17 |
+
for policy documents.
|
| 18 |
"""
|
| 19 |
def __init__(self, persist_directory: str, top_k_default: int = 5, relevance_threshold: float = 0.5):
|
| 20 |
self.persist_directory = persist_directory
|
| 21 |
self.client = chromadb.PersistentClient(path=persist_directory, settings=Settings(allow_reset=True))
|
| 22 |
self.collection_name = "neepco_dop_policies"
|
| 23 |
|
| 24 |
+
# Using a powerful open-source embedding model.
|
| 25 |
+
# Change 'cpu' to 'cuda' if a GPU is available for significantly faster embedding.
|
|
|
|
|
|
|
|
|
|
| 26 |
logger.info("Loading embedding model 'BAAI/bge-large-en-v1.5'. This may take a moment...")
|
| 27 |
+
self.embedding_model = SentenceTransformer('BAAI/bge-large-en-v1.5', device='cpu')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
logger.info("Embedding model loaded successfully.")
|
| 29 |
|
| 30 |
+
self.collection = None # Initialize collection as None for lazy loading
|
| 31 |
self.top_k_default = top_k_default
|
| 32 |
self.relevance_threshold = relevance_threshold
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
def _get_collection(self):
|
| 35 |
+
"""
|
| 36 |
+
Retrieves or creates the ChromaDB collection. Implements lazy loading.
|
| 37 |
+
"""
|
| 38 |
if self.collection is None:
|
| 39 |
self.collection = self.client.get_or_create_collection(
|
| 40 |
name=self.collection_name,
|
|
|
|
| 43 |
return self.collection
|
| 44 |
|
| 45 |
def _flatten_metadata(self, metadata: Dict) -> Dict:
|
| 46 |
+
"""Ensures all metadata values are strings, as required by some ChromaDB versions."""
|
| 47 |
+
return {key: str(value) for key, value in metadata.items()}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
def add_chunks(self, chunks: List[Dict]):
|
| 50 |
+
"""
|
| 51 |
+
Adds a list of chunks to the vector database, skipping any that already exist.
|
| 52 |
+
"""
|
| 53 |
collection = self._get_collection()
|
| 54 |
if not chunks:
|
| 55 |
logger.info("No chunks provided to add.")
|
|
|
|
| 70 |
|
| 71 |
logger.info(f"Adding {len(new_chunks)} new chunks to the vector database...")
|
| 72 |
|
| 73 |
+
# Process in batches for efficiency
|
| 74 |
+
batch_size = 32 # Reduced batch size for potentially large embeddings
|
|
|
|
| 75 |
for i in range(0, len(new_chunks), batch_size):
|
| 76 |
batch = new_chunks[i:i + batch_size]
|
| 77 |
|
|
|
|
| 79 |
texts = [chunk['text'] for chunk in batch]
|
| 80 |
metadatas = [self._flatten_metadata(chunk.get('metadata', {})) for chunk in batch]
|
| 81 |
|
| 82 |
+
# For BGE models, it's recommended not to add instructions to the document embeddings
|
| 83 |
+
embeddings = self.embedding_model.encode(texts, normalize_embeddings=True, show_progress_bar=False).tolist()
|
| 84 |
|
| 85 |
collection.add(ids=ids, embeddings=embeddings, documents=texts, metadatas=metadatas)
|
| 86 |
logger.info(f"Added batch {i//batch_size + 1}/{(len(new_chunks) + batch_size - 1) // batch_size}")
|
| 87 |
|
| 88 |
logger.info(f"Finished adding {len(new_chunks)} chunks.")
|
| 89 |
|
| 90 |
+
def search(self, query_text: str, top_k: int = None) -> List[Dict]:
|
| 91 |
"""
|
| 92 |
+
Searches the vector database for a given query text.
|
| 93 |
+
Returns a list of results filtered by a relevance threshold.
|
| 94 |
"""
|
| 95 |
collection = self._get_collection()
|
| 96 |
|
| 97 |
+
# ✅ IMPROVEMENT: Add the recommended instruction prefix for BGE retrieval models.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
instructed_query = f"Represent this sentence for searching relevant passages: {query_text}"
|
| 99 |
|
| 100 |
+
# ✅ IMPROVEMENT: Normalize embeddings for more accurate similarity search.
|
| 101 |
+
query_embedding = self.embedding_model.encode([instructed_query], normalize_embeddings=True).tolist()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
k = top_k if top_k is not None else self.top_k_default
|
| 104 |
|
| 105 |
+
# Retrieve more results initially to allow for filtering
|
| 106 |
+
results = collection.query(
|
| 107 |
+
query_embeddings=query_embedding,
|
| 108 |
+
n_results=k * 2, # Retrieve more to filter by threshold
|
| 109 |
+
include=["documents", "metadatas", "distances"]
|
| 110 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
search_results = []
|
| 113 |
if results and results.get('documents') and results['documents'][0]:
|
| 114 |
for i, doc in enumerate(results['documents'][0]):
|
| 115 |
+
# The distance for normalized embeddings is often interpreted as 1 - cosine_similarity
|
| 116 |
relevance_score = 1 - results['distances'][0][i]
|
| 117 |
|
| 118 |
if relevance_score >= self.relevance_threshold:
|
| 119 |
+
search_results.append({
|
| 120 |
'text': doc,
|
| 121 |
'metadata': results['metadatas'][0][i],
|
| 122 |
'relevance_score': relevance_score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
})
|
|
|
|
|
|
|
| 124 |
|
| 125 |
+
# Sort by relevance score and return the top_k results
|
| 126 |
+
return sorted(search_results, key=lambda x: x['relevance_score'], reverse=True)[:k]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
def ensure_db_populated(db_instance: PolicyVectorDB, chunks_file_path: str) -> bool:
|
| 129 |
+
"""
|
| 130 |
+
Checks if the DB is empty and populates it from a JSONL file if needed.
|
| 131 |
+
"""
|
| 132 |
try:
|
| 133 |
if db_instance._get_collection().count() > 0:
|
| 134 |
logger.info("Vector database already contains data. Skipping population.")
|
|
|
|
| 151 |
logger.warning(f"Chunks file at '{chunks_file_path}' is empty or invalid. No data to add.")
|
| 152 |
return False
|
| 153 |
|
| 154 |
+
db_instance.add_chunks(chunks_to_add)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
logger.info("Vector database population attempt complete.")
|
| 156 |
return True
|
| 157 |
except Exception as e:
|
| 158 |
logger.error(f"An error occurred during DB population check: {e}", exc_info=True)
|
| 159 |
+
return False
|