CoralreefSegmentation / inference.py
LhatMjnk's picture
Update inference.py
36ab196 verified
# inference.py
import torch
import torch.nn.functional as F
import spaces
import json
import urllib.request
import cv2
import numpy as np
from PIL import Image
from transformers import SegformerImageProcessorFast, SegformerForSemanticSegmentation
id2label = json.load(urllib.request.urlopen(
"https://huggingface.co/datasets/EPFL-ECEO/coralscapes/resolve/main/id2label.json"))
label2color = json.load(urllib.request.urlopen(
"https://huggingface.co/datasets/EPFL-ECEO/coralscapes/resolve/main/label2color.json"))
# Load model from HF (swap this with your own if you want)
HF_MODEL_ID = "EPFL-ECEO/segformer-b5-finetuned-coralscapes-1024-1024"
def create_segmentation_overlay(pred, id2label, label2color, image, alpha=0.25):
"""
Colorizes the segmentation prediction and creates an overlay image.
Args:
pred: The segmentation prediction (numpy array).
id2label: Dictionary mapping class IDs to labels.
label2color: Dictionary mapping labels to colors.
image: The original PIL Image.
Returns:
A PIL Image representing the overlay of the original image and the colorized segmentation mask.
"""
H, W = pred.shape
rgb = np.zeros((H, W, 3), dtype=np.uint8)
# Get unique class IDs present in the prediction
unique_classes = np.unique(pred)
# Create a mapping from class ID to color
id2color = {int(id): label2color[label] for id, label in id2label.items()}
# Define a default color for unknown classes (e.g., black)
default_color = [0, 0, 0]
# Iterate through unique class IDs and colorize the image
for class_id in unique_classes:
# Get the color for the current class ID, use default_color if not found
rgb_c = id2color.get(int(class_id), default_color)
# Assign the color to the pixels with the current class ID
rgb[pred == class_id] = rgb_c
mask_rgb = Image.fromarray(rgb)
# 4) Alpha overlay
overlay = Image.blend(image.convert("RGBA"), mask_rgb.convert("RGBA"), alpha=alpha)
return overlay
def resize_image(image, target_size=1024):
"""
Used to resize the image such that the smaller side equals 1024
"""
h_img, w_img = image.size
if h_img < w_img:
new_h, new_w = target_size, int(w_img * (target_size / h_img))
else:
new_h, new_w = int(h_img * (target_size / w_img)), target_size
resized_img = image.resize((new_h, new_w))
return resized_img
class CoralSegModel:
def __init__(self, device=None):
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
self.processor = SegformerImageProcessorFast.from_pretrained(HF_MODEL_ID)
self.model = SegformerForSemanticSegmentation.from_pretrained(
HF_MODEL_ID,
dtype=torch.bfloat16
).to(self.device)
self.model.eval()
@spaces.GPU
def segment_image(self, image, preprocessor, model, crop_size = (1024, 1024), num_classes = 40) -> np.ndarray:
"""
Finds an optimal stride based on the image size and aspect ratio to create
overlapping sliding windows of size 1024x1024 which are then fed into the model.
"""
h_crop, w_crop = crop_size
img = torch.Tensor(np.array(resize_image(image, target_size=1024)).transpose(2, 0, 1)).unsqueeze(0)
img = img.to(self.device, torch.bfloat16)
batch_size, _, h_img, w_img = img.size()
h_grids = int(np.round(3/2*h_img/h_crop)) if h_img > h_crop else 1
w_grids = int(np.round(3/2*w_img/w_crop)) if w_img > w_crop else 1
h_stride = int((h_img - h_crop + h_grids -1)/(h_grids -1)) if h_grids > 1 else h_crop
w_stride = int((w_img - w_crop + w_grids -1)/(w_grids -1)) if w_grids > 1 else w_crop
preds = img.new_zeros((batch_size, num_classes, h_img, w_img))
count_mat = img.new_zeros((batch_size, 1, h_img, w_img))
for h_idx in range(h_grids):
for w_idx in range(w_grids):
y1 = h_idx * h_stride
x1 = w_idx * w_stride
y2 = min(y1 + h_crop, h_img)
x2 = min(x1 + w_crop, w_img)
y1 = max(y2 - h_crop, 0)
x1 = max(x2 - w_crop, 0)
crop_img = img[:, :, y1:y2, x1:x2]
with torch.no_grad():
if(preprocessor):
inputs = preprocessor(crop_img, return_tensors = "pt", device=self.device)
inputs["pixel_values"] = inputs["pixel_values"].to(self.device, torch.bfloat16)
else:
inputs = crop_img.to(self.device, torch.bfloat16)
outputs = model.to(self.device)(**inputs)
resized_logits = F.interpolate(
outputs.logits[0].unsqueeze(dim=0), size=crop_img.shape[-2:], mode="bilinear", align_corners=False
)
preds += F.pad(resized_logits,
(int(x1), int(preds.shape[3] - x2), int(y1),
int(preds.shape[2] - y2)))
count_mat[:, :, y1:y2, x1:x2] += 1
assert (count_mat == 0).sum() == 0
preds = preds / count_mat
preds = preds.argmax(dim=1)
preds = F.interpolate(preds.unsqueeze(0).type(torch.uint8), size=image.size[::-1], mode='nearest')
label_pred = preds.squeeze().cpu().numpy()
return label_pred
@spaces.GPU
def predict_map_and_overlay(self, frame_bgr: np.ndarray):
"""
Returns:
pred_map: HxW (uint8/int) with class indices in [0..C-1]
overlay: HxWx3 RGB uint8 (blended color mask over original)
rgb: HxWx3 RGB uint8 original frame (for AnnotatedImage base)
"""
rgb = frame_bgr
pil = Image.fromarray(rgb)
pred = self.segment_image(pil, self.processor, self.model)
overlay_rgb = create_segmentation_overlay(pred, id2label, label2color, pil, 0.5)
return pred, overlay_rgb, rgb