Spaces:
Sleeping
Sleeping
upload inference and app python scripts
Browse files- app.py +124 -0
- inference.py +44 -0
app.py
ADDED
|
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import time
|
| 3 |
+
import cv2
|
| 4 |
+
import numpy as np
|
| 5 |
+
import gradio as gr
|
| 6 |
+
|
| 7 |
+
from inference import CoralSegModel
|
| 8 |
+
|
| 9 |
+
model = CoralSegModel()
|
| 10 |
+
|
| 11 |
+
############################
|
| 12 |
+
# Helpers
|
| 13 |
+
############################
|
| 14 |
+
def _safe_read(cap):
|
| 15 |
+
ok, frame = cap.read()
|
| 16 |
+
if not ok or frame is None:
|
| 17 |
+
return None
|
| 18 |
+
return frame
|
| 19 |
+
|
| 20 |
+
############################
|
| 21 |
+
# 1) Remote stream (server-pull)
|
| 22 |
+
############################
|
| 23 |
+
def remote_stream(rtsp_or_http_url: str, skip_every_n=1):
|
| 24 |
+
"""
|
| 25 |
+
Generator that yields processed frames for gr.Video streaming.
|
| 26 |
+
- rtsp_or_http_url: e.g., rtsp://..., http://mjpeg..., or a video file URL
|
| 27 |
+
"""
|
| 28 |
+
if not rtsp_or_http_url:
|
| 29 |
+
yield None
|
| 30 |
+
return
|
| 31 |
+
|
| 32 |
+
cap = cv2.VideoCapture(rtsp_or_http_url)
|
| 33 |
+
if not cap.isOpened():
|
| 34 |
+
yield None
|
| 35 |
+
return
|
| 36 |
+
|
| 37 |
+
idx = 0
|
| 38 |
+
try:
|
| 39 |
+
while True:
|
| 40 |
+
frame = _safe_read(cap)
|
| 41 |
+
if frame is None:
|
| 42 |
+
break
|
| 43 |
+
|
| 44 |
+
if skip_every_n > 1 and (idx % skip_every_n) != 0:
|
| 45 |
+
idx += 1
|
| 46 |
+
continue
|
| 47 |
+
|
| 48 |
+
processed = model.predict_overlay(frame)
|
| 49 |
+
# IMPORTANT: Gradio 5 streaming expects raw numpy frames (H, W, 3) BGR/RGB both supported for display
|
| 50 |
+
yield processed
|
| 51 |
+
idx += 1
|
| 52 |
+
# Lower CPU usage a bit (tune this)
|
| 53 |
+
time.sleep(0.001)
|
| 54 |
+
finally:
|
| 55 |
+
cap.release()
|
| 56 |
+
|
| 57 |
+
def uploaded_video_stream(video_file, skip_every_n=1):
|
| 58 |
+
"""
|
| 59 |
+
Gradio passes the uploaded file path (string) for gr.Video.
|
| 60 |
+
We open it with OpenCV and yield processed frames to stream.
|
| 61 |
+
"""
|
| 62 |
+
if not video_file:
|
| 63 |
+
yield None
|
| 64 |
+
return
|
| 65 |
+
|
| 66 |
+
cap = cv2.VideoCapture(video_file)
|
| 67 |
+
if not cap.isOpened():
|
| 68 |
+
yield None
|
| 69 |
+
return
|
| 70 |
+
|
| 71 |
+
idx = 0
|
| 72 |
+
try:
|
| 73 |
+
while True:
|
| 74 |
+
ok, frame = cap.read()
|
| 75 |
+
if not ok or frame is None:
|
| 76 |
+
break
|
| 77 |
+
if skip_every_n > 1 and (idx % skip_every_n) != 0:
|
| 78 |
+
idx += 1
|
| 79 |
+
continue
|
| 80 |
+
processed = model.predict_overlay(frame)
|
| 81 |
+
yield processed
|
| 82 |
+
idx += 1
|
| 83 |
+
# tiny sleep to reduce CPU spikes; tune as needed
|
| 84 |
+
time.sleep(0.001)
|
| 85 |
+
finally:
|
| 86 |
+
cap.release()
|
| 87 |
+
|
| 88 |
+
############################
|
| 89 |
+
# UI
|
| 90 |
+
############################
|
| 91 |
+
with gr.Blocks(title="CoralScapes Streaming Segmentation") as demo:
|
| 92 |
+
gr.Markdown("# CoralScapes Streaming Segmentation")
|
| 93 |
+
gr.Markdown(
|
| 94 |
+
"Two modes: **Remote Stream** (paste RTSP/HTTP/MJPEG URL) or **Upload Video**."
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
with gr.Tab("Remote Stream (RTSP/HTTP)"):
|
| 98 |
+
url = gr.Textbox(
|
| 99 |
+
label="Stream URL (rtsp://..., http://...)", placeholder="rtsp://user:pass@ip:port/..."
|
| 100 |
+
)
|
| 101 |
+
skip = gr.Slider(1, 5, value=1, step=1, label="Process every Nth frame (perf tweak)")
|
| 102 |
+
out_image = gr.Image(label="Segmented Stream", streaming=True) # Changed to Image
|
| 103 |
+
start_btn = gr.Button("Start")
|
| 104 |
+
stop_btn = gr.Button("Stop")
|
| 105 |
+
|
| 106 |
+
def _start(url_value, n):
|
| 107 |
+
return remote_stream(url_value, int(n))
|
| 108 |
+
|
| 109 |
+
start_btn.click(_start, inputs=[url, skip], outputs=out_image)
|
| 110 |
+
stop_btn.click(lambda: None, inputs=None, outputs=out_image)
|
| 111 |
+
|
| 112 |
+
with gr.Tab("Upload Video"):
|
| 113 |
+
gr.Markdown("Upload a video file; the server will stream segmented frames back in real time.")
|
| 114 |
+
vid_in = gr.Video(sources=["upload"], format="mp4", label="Input Video")
|
| 115 |
+
out_image = gr.Image(label="Segmented Output (streaming)", streaming=True) # Changed to Image
|
| 116 |
+
start_btn2 = gr.Button("Process")
|
| 117 |
+
stop_btn2 = gr.Button("Stop")
|
| 118 |
+
|
| 119 |
+
skip2 = gr.Slider(1, 5, value=1, step=1, label="Process every Nth frame")
|
| 120 |
+
start_btn2.click(uploaded_video_stream, inputs=[vid_in, skip2], outputs=out_image)
|
| 121 |
+
stop_btn2.click(lambda: None, inputs=None, outputs=out_image)
|
| 122 |
+
|
| 123 |
+
if __name__ == "__main__":
|
| 124 |
+
demo.queue().launch(server_name="0.0.0.0", server_port=7860)
|
inference.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# inference.py
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
|
| 6 |
+
|
| 7 |
+
# Load model from HF (swap this with your own if you want)
|
| 8 |
+
HF_MODEL_ID = "EPFL-ECEO/segformer-b2-finetuned-coralscapes-1024-1024"
|
| 9 |
+
|
| 10 |
+
class CoralSegModel:
|
| 11 |
+
def __init__(self, device=None):
|
| 12 |
+
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
|
| 13 |
+
self.processor = SegformerImageProcessor.from_pretrained(HF_MODEL_ID)
|
| 14 |
+
self.model = SegformerForSemanticSegmentation.from_pretrained(HF_MODEL_ID).to(self.device)
|
| 15 |
+
self.model.eval()
|
| 16 |
+
|
| 17 |
+
# Build a simple color palette for masks (fallback if none provided)
|
| 18 |
+
# 0..N-1 colors - here random-ish but stable
|
| 19 |
+
num_classes = self.model.config.id2label and len(self.model.config.id2label) or 40
|
| 20 |
+
rng = np.random.RandomState(0)
|
| 21 |
+
self.palette = (rng.randint(0, 255, size=(num_classes, 3))).astype(np.uint8)
|
| 22 |
+
|
| 23 |
+
@torch.inference_mode()
|
| 24 |
+
def predict_overlay(self, frame_bgr: np.ndarray, alpha: float = 0.45) -> np.ndarray:
|
| 25 |
+
"""
|
| 26 |
+
frame_bgr: np.ndarray HxWx3 in BGR (as read by OpenCV)
|
| 27 |
+
returns: np.ndarray HxWx3 in BGR (overlay)
|
| 28 |
+
"""
|
| 29 |
+
# Convert BGR -> RGB PIL
|
| 30 |
+
rgb = frame_bgr[:, :, ::-1]
|
| 31 |
+
pil = Image.fromarray(rgb)
|
| 32 |
+
|
| 33 |
+
inputs = self.processor(images=pil, return_tensors="pt").to(self.device)
|
| 34 |
+
outputs = self.model(**inputs)
|
| 35 |
+
logits = outputs.logits # [B, C, h, w]
|
| 36 |
+
upsampled = torch.nn.functional.interpolate(
|
| 37 |
+
logits, size=pil.size[::-1], mode="bilinear", align_corners=False
|
| 38 |
+
)
|
| 39 |
+
pred = upsampled.argmax(dim=1)[0].detach().cpu().numpy().astype(np.uint8) # HxW
|
| 40 |
+
|
| 41 |
+
color_mask = self.palette[pred] # HxWx3 (RGB)
|
| 42 |
+
overlay_rgb = (rgb * (1 - alpha) + color_mask * alpha).astype(np.uint8)
|
| 43 |
+
overlay_bgr = overlay_rgb[:, :, ::-1]
|
| 44 |
+
return overlay_bgr
|