File size: 17,158 Bytes
1c67453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
```markdown
# MCP Server Implementation Guide

## Overview

RewardPilot implements a multi-agent MCP (Model Context Protocol) architecture with 4 independent microservices that work together to provide intelligent credit card recommendations.

## Architecture Diagram

```
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                         User Interface                           β”‚
β”‚                      (Gradio 6.0 App)                           β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                             β”‚
                             β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                    Orchestrator Agent                            β”‚
β”‚                  (Claude 3.5 Sonnet)                            β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β”‚  β”‚  Phase 1: Planning                                       β”‚  β”‚
β”‚  β”‚  - Analyze transaction context                           β”‚  β”‚
β”‚  β”‚  - Determine required MCP servers                        β”‚  β”‚
β”‚  β”‚  - Create execution strategy                             β”‚  β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                             β”‚
                β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                β–Ό            β–Ό            β–Ό
    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚ Smart Wallet  β”‚ β”‚ RAG      β”‚ β”‚ Forecast   β”‚
    β”‚ MCP Server    β”‚ β”‚ MCP      β”‚ β”‚ MCP Server β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜
            β”‚              β”‚              β”‚
            β–Ό              β–Ό              β–Ό
    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚         Gemini 2.0 Flash                 β”‚
    β”‚      (Reasoning & Synthesis)             β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                   β”‚
                   β–Ό
           β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
           β”‚ Final Responseβ”‚
           β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
```

---

## MCP Server 1: Orchestrator

### Purpose
Coordinates all MCP servers and manages the agent workflow.

### Deployment
- **URL:** https://mcp-1st-birthday-rewardpilot-orchestrator.hf.space
- **Stack:** FastAPI + Claude 3.5 Sonnet
- **Hosting:** Hugging Face Spaces

### API Endpoints

#### POST `/recommend`
Get card recommendation for a transaction.

**Request:**
```json
{
  "user_id": "u_alice",
  "merchant": "Whole Foods",
  "mcc": "5411",
  "amount_usd": 127.50,
  "category": "Groceries"
}
```

**Response:**
```json
{
  "recommended_card": {
    "card_id": "c_amex_gold",
    "card_name": "American Express Gold",
    "issuer": "American Express"
  },
  "rewards": {
    "points_earned": 510,
    "cash_value": 5.10,
    "earn_rate": "4x points"
  },
  "reasoning": "Amex Gold offers 4x points on U.S. supermarkets...",
  "confidence": 0.95,
  "alternatives": [
    {
      "card_name": "Citi Custom Cash",
      "rewards": 3.82,
      "reason": "5% but monthly cap already hit"
    }
  ],
  "warnings": [
    "You're at $450/$1500 monthly cap. 3 more grocery trips available."
  ]
}
```

### Implementation

```python
# orchestrator_server.py
from fastapi import FastAPI, HTTPException
from anthropic import Anthropic
import httpx
import asyncio

app = FastAPI(title="RewardPilot Orchestrator")
anthropic = Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY"))

@app.post("/recommend")
async def recommend_card(request: TransactionRequest):
    # Phase 1: Planning with Claude
    plan = await create_execution_plan(request)
    
    # Phase 2: Parallel MCP calls
    mcp_results = await execute_mcp_calls(plan)
    
    # Phase 3: Reasoning with Gemini
    explanation = await synthesize_reasoning(request, mcp_results)
    
    # Phase 4: Format response
    return format_recommendation(mcp_results, explanation)

async def create_execution_plan(request: TransactionRequest):
    """Claude analyzes transaction and plans MCP calls"""
    prompt = f"""
    Analyze this transaction and determine which MCP servers to call:
    
    Transaction:
    - Merchant: {request.merchant}
    - Category: {request.category}
    - Amount: ${request.amount_usd}
    
    Available MCP servers:
    1. smart_wallet - Card recommendations and reward calculations
    2. rewards_rag - Semantic search of card benefits
    3. spend_forecast - Spending predictions and cap warnings
    
    Return a JSON plan with:
    - strategy: optimization approach
    - mcp_calls: list of servers to call (priority order)
    - confidence_threshold: minimum confidence for recommendation
    """
    
    response = anthropic.messages.create(
        model="claude-3-5-sonnet-20241022",
        max_tokens=1024,
        messages=[{"role": "user", "content": prompt}]
    )
    
    return json.loads(response.content[0].text)

async def execute_mcp_calls(plan: dict):
    """Call MCP servers in parallel"""
    tasks = []
    
    for mcp_call in plan["mcp_calls"]:
        if mcp_call["service"] == "smart_wallet":
            tasks.append(call_smart_wallet(request))
        elif mcp_call["service"] == "rewards_rag":
            tasks.append(call_rewards_rag(request))
        elif mcp_call["service"] == "spend_forecast":
            tasks.append(call_forecast(request))
    
    results = await asyncio.gather(*tasks)
    return dict(zip([c["service"] for c in plan["mcp_calls"]], results))
```

---

## MCP Server 2: Smart Wallet

### Purpose
Analyzes user's credit cards and calculates optimal rewards.

### Deployment
- **URL:** https://mcp-1st-birthday-rewardpilot-smart-wallet.hf.space
- **Stack:** FastAPI + Python + PostgreSQL
- **Hosting:** Hugging Face Spaces

### API Endpoints

#### POST `/analyze`
Analyze transaction against user's wallet.

**Request:**
```json
{
  "user_id": "u_alice",
  "merchant": "Whole Foods",
  "mcc": "5411",
  "amount_usd": 127.50
}
```

**Response:**
```json
{
  "recommended_card": {
    "card_id": "c_amex_gold",
    "card_name": "American Express Gold",
    "rewards_earned": 5.10,
    "earn_rate": "4x points",
    "points_earned": 510
  },
  "all_cards_comparison": [
    {
      "card_name": "Amex Gold",
      "rewards": 5.10,
      "rank": 1
    },
    {
      "card_name": "Citi Custom Cash",
      "rewards": 3.82,
      "rank": 2,
      "note": "Cap already hit this month"
    }
  ]
}
```

### Implementation

```python
# smart_wallet_server.py
from fastapi import FastAPI
from sqlalchemy import create_engine
from typing import List

app = FastAPI(title="Smart Wallet MCP")

class CardAnalyzer:
    def __init__(self, user_id: str):
        self.user_id = user_id
        self.cards = self.load_user_cards()
    
    def analyze_transaction(self, merchant: str, mcc: str, amount: float):
        """Calculate rewards for all cards"""
        results = []
        
        for card in self.cards:
            # Get reward rate for this MCC
            reward_rate = self.get_reward_rate(card, mcc)
            
            # Check spending caps
            current_spending = self.get_monthly_spending(card, mcc)
            cap_remaining = card.monthly_cap - current_spending
            
            # Calculate rewards
            if cap_remaining >= amount:
                rewards = amount * reward_rate
            else:
                # Partial cap scenario
                rewards = (cap_remaining * reward_rate) + 
                         ((amount - cap_remaining) * card.base_rate)
            
            results.append({
                "card": card,
                "rewards": rewards,
                "effective_rate": rewards / amount,
                "cap_status": {
                    "current": current_spending,
                    "limit": card.monthly_cap,
                    "remaining": cap_remaining
                }
            })
        
        # Sort by rewards (descending)
        results.sort(key=lambda x: x["rewards"], reverse=True)
        
        return results[0]  # Return best card
```

---

## MCP Server 3: Rewards RAG

### Purpose
Semantic search across credit card benefit documents.

### Deployment
- **URL:** https://mcp-1st-birthday-rewardpilot-rewards-rag.hf.space
- **Stack:** FastAPI + LlamaIndex + ChromaDB
- **Hosting:** Hugging Face Spaces

### API Endpoints

#### POST `/query`
Search card benefits with natural language.

**Request:**
```json
{
  "query": "Does Amex Gold work at Costco for groceries?",
  "card_name": "American Express Gold",
  "top_k": 3
}
```

**Response:**
```json
{
  "answer": "No, American Express cards are not accepted at Costco warehouse locations due to Costco's exclusive Visa agreement. However, Amex Gold works at Costco.com for online orders.",
  "sources": [
    {
      "card_name": "American Express Gold",
      "content": "Merchant acceptance: Not accepted at Costco warehouses...",
      "relevance_score": 0.92
    }
  ]
}
```

### Implementation
See `docs/llamaindex_setup.md` for detailed RAG implementation.

---

## MCP Server 4: Spend Forecast

### Purpose
ML-based spending predictions and cap warnings.

### Deployment
- **URL:** https://mcp-1st-birthday-rewardpilot-spend-forecast.hf.space
- **Stack:** FastAPI + Scikit-learn + Redis
- **Hosting:** Hugging Face Spaces

### API Endpoints

#### POST `/predict`
Predict spending for next period.

**Request:**
```json
{
  "user_id": "u_alice",
  "card_id": "c_amex_gold",
  "category": "Groceries",
  "horizon_days": 30
}
```

**Response:**
```json
{
  "predicted_spending": 520.50,
  "confidence_interval": [480.00, 560.00],
  "warnings": [
    {
      "type": "cap_warning",
      "message": "Likely to exceed $500 monthly cap",
      "probability": 0.78,
      "suggested_action": "Switch to Citi Custom Cash after $500"
    }
  ]
}
```

### Implementation

```python
# forecast_server.py
from fastapi import FastAPI
from sklearn.ensemble import RandomForestRegressor
import numpy as np

app = FastAPI(title="Spend Forecast MCP")

class SpendingForecaster:
    def __init__(self):
        self.model = RandomForestRegressor(n_estimators=100)
    
    def predict(self, user_id: str, category: str, horizon_days: int):
        """Predict spending for next N days"""
        # Load historical data
        history = self.load_user_history(user_id, category)
        
        # Feature engineering
        features = self.extract_features(history)
        
        # Predict
        prediction = self.model.predict(features)
        
        # Calculate confidence interval
        predictions = [tree.predict(features) for tree in self.model.estimators_]
        lower = np.percentile(predictions, 5)
        upper = np.percentile(predictions, 95)
        
        return {
            "predicted_spending": float(prediction[0]),
            "confidence_interval": [float(lower), float(upper)]
        }
```

---

## Communication Flow

### Sequence Diagram

```
User -> Gradio: Enter transaction
Gradio -> Orchestrator: POST /recommend
Orchestrator -> Claude: Create execution plan
Claude -> Orchestrator: {plan: call all 3 MCPs}

Orchestrator -> Smart Wallet: POST /analyze
Orchestrator -> RAG: POST /query
Orchestrator -> Forecast: POST /predict

Smart Wallet -> Orchestrator: {best_card: Amex Gold, rewards: 5.10}
RAG -> Orchestrator: {benefits: "4x on groceries..."}
Forecast -> Orchestrator: {warning: "Near cap"}

Orchestrator -> Gemini: Synthesize results
Gemini -> Orchestrator: {explanation: "Use Amex Gold because..."}

Orchestrator -> Gradio: Final recommendation
Gradio -> User: Display result
```

---

## Deployment Instructions

### 1. Deploy Each MCP Server to Hugging Face

```bash
# Clone template
git clone https://huggingface.co/spaces/YOUR_USERNAME/rewardpilot-orchestrator

# Add files
cp orchestrator_server.py app.py
cp requirements.txt .

# Create Space on HF
huggingface-cli repo create rewardpilot-orchestrator --type space --space_sdk gradio

# Push
git add .
git commit -m "Deploy orchestrator"
git push
```

### 2. Set Environment Variables

In each Space's settings, add:
```bash
ANTHROPIC_API_KEY=sk-ant-xxxxx
GEMINI_API_KEY=AIzaSyxxxxx
OPENAI_API_KEY=sk-xxxxx
```

### 3. Configure Endpoints

In main `app.py`:
```python
MCP_ENDPOINTS = {
    "orchestrator": "https://mcp-1st-birthday-rewardpilot-orchestrator.hf.space",
    "smart_wallet": "https://mcp-1st-birthday-rewardpilot-smart-wallet.hf.space",
    "rewards_rag": "https://mcp-1st-birthday-rewardpilot-rewards-rag.hf.space",
    "forecast": "https://mcp-1st-birthday-rewardpilot-spend-forecast.hf.space"
}
```

---

## Error Handling

### Graceful Degradation

```python
async def call_mcp_with_fallback(service_name: str, request_data: dict):
    """Call MCP server with timeout and fallback"""
    try:
        async with httpx.AsyncClient(timeout=10.0) as client:
            response = await client.post(
                MCP_ENDPOINTS[service_name],
                json=request_data
            )
            response.raise_for_status()
            return response.json()
    except httpx.TimeoutException:
        logger.error(f"{service_name} timeout")
        return get_fallback_response(service_name)
    except httpx.HTTPError as e:
        logger.error(f"{service_name} error: {e}")
        return get_fallback_response(service_name)
```

---

## Monitoring

### Health Checks

```python
@app.get("/health")
async def health_check():
    """Check status of all MCP servers"""
    statuses = {}
    
    for service, url in MCP_ENDPOINTS.items():
        try:
            async with httpx.AsyncClient(timeout=5.0) as client:
                response = await client.get(f"{url}/health")
                statuses[service] = {
                    "status": "healthy" if response.status_code == 200 else "unhealthy",
                    "latency_ms": response.elapsed.total_seconds() * 1000
                }
        except Exception as e:
            statuses[service] = {"status": "down", "error": str(e)}
    
    return statuses
```

---

## Performance Optimization

### Caching Strategy

```python
from functools import lru_cache
import redis

# Redis cache for frequent queries
redis_client = redis.Redis(host='localhost', port=6379, decode_responses=True)

@lru_cache(maxsize=1000)
def get_card_benefits(card_name: str):
    """Cache card benefits for 1 hour"""
    cache_key = f"benefits:{card_name}"
    
    # Check cache
    cached = redis_client.get(cache_key)
    if cached:
        return json.loads(cached)
    
    # Fetch from RAG
    result = call_rewards_rag({"query": f"Get all benefits for {card_name}"})
    
    # Cache for 1 hour
    redis_client.setex(cache_key, 3600, json.dumps(result))
    
    return result
```

---

## Testing

### Integration Tests

```python
import pytest
import httpx

@pytest.mark.asyncio
async def test_orchestrator_end_to_end():
    """Test full recommendation flow"""
    async with httpx.AsyncClient() as client:
        response = await client.post(
            f"{MCP_ENDPOINTS['orchestrator']}/recommend",
            json={
                "user_id": "test_user",
                "merchant": "Whole Foods",
                "amount_usd": 100.00
            }
        )
        
        assert response.status_code == 200
        data = response.json()
        assert "recommended_card" in data
        assert "rewards" in data
        assert "reasoning" in data
```

---

## Next Steps

1. **Scale MCP servers** - Add load balancing
2. **Add authentication** - JWT tokens for API access
3. **Implement webhooks** - Real-time transaction notifications
4. **Add more MCP servers** - Travel optimization, business expenses, etc.

---

**Related Documentation:**
- [Modal Deployment Guide](./modal_deployment.md)
- [LlamaIndex RAG Setup](./llamaindex_setup.md)
- [Agent Reasoning Flow](./agent_reasoning.md)
```

---