Spaces:
Running
Running
Delete app
Browse files- app/agent.py +0 -985
- app/custom.css +0 -59
- app/prompts.py +0 -156
- app/requirements.txt +0 -549
- app/utils.py +0 -70
app/agent.py
DELETED
|
@@ -1,985 +0,0 @@
|
|
| 1 |
-
"""
|
| 2 |
-
LangGraph Agent for Vibe Reader
|
| 3 |
-
Implements the agentic workflow for book recommendation based on visual vibes
|
| 4 |
-
"""
|
| 5 |
-
|
| 6 |
-
import os
|
| 7 |
-
import json
|
| 8 |
-
from typing import TypedDict, List, Dict, Any, Literal, Annotated
|
| 9 |
-
from operator import add
|
| 10 |
-
from openai import OpenAI
|
| 11 |
-
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
|
| 12 |
-
from langgraph.graph import StateGraph, END
|
| 13 |
-
from langgraph.types import interrupt
|
| 14 |
-
from dotenv import load_dotenv
|
| 15 |
-
|
| 16 |
-
load_dotenv()
|
| 17 |
-
|
| 18 |
-
# ============================================================================
|
| 19 |
-
# CONFIGURATION
|
| 20 |
-
# ============================================================================
|
| 21 |
-
|
| 22 |
-
NEBIUS_API_KEY = os.getenv("NEBIUS_API_KEY")
|
| 23 |
-
NEBIUS_BASE_URL = "https://api.tokenfactory.nebius.com/v1/"
|
| 24 |
-
VLM_MODEL = "google/gemma-3-27b-it-fast"
|
| 25 |
-
REASONING_MODEL = "Qwen/Qwen3-30B-A3B-Thinking-2507"
|
| 26 |
-
FAST_MODEL = "moonshotai/Kimi-K2-Instruct" # Non-thinking model for simple tasks
|
| 27 |
-
|
| 28 |
-
MODAL_VECTOR_STORE_URL = os.getenv("MODAL_VECTOR_STORE_URL", "https://placeholder-modal-url.modal.run/search")
|
| 29 |
-
GOOGLE_BOOKS_MCP_URL = os.getenv("GOOGLE_BOOKS_MCP_URL", "https://mcp-1st-birthday-google-books-mcp.hf.space")
|
| 30 |
-
|
| 31 |
-
NUM_BOOKS_TO_RETRIEVE = 10 # Target number of books with valid descriptions
|
| 32 |
-
NUM_BOOKS_TO_FETCH = 15 # Fetch extra to account for books without descriptions
|
| 33 |
-
NUM_FINAL_BOOKS = 3
|
| 34 |
-
|
| 35 |
-
# ============================================================================
|
| 36 |
-
# STATE DEFINITION
|
| 37 |
-
# ============================================================================
|
| 38 |
-
|
| 39 |
-
class AgentState(TypedDict):
|
| 40 |
-
"""State maintained throughout the agent workflow"""
|
| 41 |
-
# User inputs
|
| 42 |
-
images: List[str] # List of image URLs or base64 encoded images
|
| 43 |
-
|
| 44 |
-
# Conversation history (no reducer - we manage the list directly)
|
| 45 |
-
messages: List[Dict[str, str]]
|
| 46 |
-
|
| 47 |
-
# Vibe components (from JSON extraction)
|
| 48 |
-
aesthetic_genre_keywords: List[str] # Genre/aesthetic keywords
|
| 49 |
-
mood_atmosphere: List[str] # Mood descriptors
|
| 50 |
-
core_themes: List[str] # Core themes
|
| 51 |
-
tropes: List[str] # Story tropes
|
| 52 |
-
feels_like: str # User-facing "feels like" description (what gets refined)
|
| 53 |
-
vibe_refinement_count: int # Number of refinement iterations
|
| 54 |
-
|
| 55 |
-
# Book retrieval
|
| 56 |
-
retrieved_books: List[Dict[str, str]] # List of {title, author} dicts
|
| 57 |
-
books_with_metadata: List[Dict[str, Any]] # Enriched with Google Books data
|
| 58 |
-
|
| 59 |
-
# Narrowing process
|
| 60 |
-
q1_question: str # First narrowing question (stored for resume)
|
| 61 |
-
q2_question: str # Second narrowing question (stored for resume)
|
| 62 |
-
user_preferences: Dict[str, Any] # Accumulated user preferences from Q&A (question + answer pairs)
|
| 63 |
-
final_books: List[Dict[str, Any]] # Final 3 books
|
| 64 |
-
|
| 65 |
-
# Final outputs
|
| 66 |
-
soundtrack_url: str # ElevenLabs generated soundtrack
|
| 67 |
-
|
| 68 |
-
# Debug/reasoning (no reducer - we manage the list directly)
|
| 69 |
-
reasoning: List[str]
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
# ============================================================================
|
| 73 |
-
# HELPER FUNCTIONS
|
| 74 |
-
# ============================================================================
|
| 75 |
-
|
| 76 |
-
def create_openai_client() -> OpenAI:
|
| 77 |
-
"""Create OpenAI client configured for Nebius"""
|
| 78 |
-
return OpenAI(api_key=NEBIUS_API_KEY, base_url=NEBIUS_BASE_URL)
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
def call_llm(messages: List[Dict[str, Any]], temperature: float = 0.7, model: str = REASONING_MODEL, include_reasoning: bool = False, max_tokens: int = 2500):
|
| 82 |
-
"""Generic LLM call for reasoning and decision-making using Nebius API
|
| 83 |
-
|
| 84 |
-
Args:
|
| 85 |
-
messages: Conversation messages
|
| 86 |
-
temperature: Sampling temperature
|
| 87 |
-
model: Model to use
|
| 88 |
-
include_reasoning: If True, returns tuple of (content, reasoning_text)
|
| 89 |
-
max_tokens: Maximum tokens for response (default 1000)
|
| 90 |
-
|
| 91 |
-
Returns:
|
| 92 |
-
str or tuple: Response content, or (content, reasoning) if include_reasoning=True
|
| 93 |
-
"""
|
| 94 |
-
client = create_openai_client() # Uses Nebius
|
| 95 |
-
response = client.chat.completions.create(
|
| 96 |
-
model=model,
|
| 97 |
-
messages=messages,
|
| 98 |
-
temperature=temperature,
|
| 99 |
-
max_tokens=max_tokens
|
| 100 |
-
)
|
| 101 |
-
|
| 102 |
-
message = response.choices[0].message
|
| 103 |
-
content = message.content or ""
|
| 104 |
-
|
| 105 |
-
if include_reasoning:
|
| 106 |
-
# Nebius API returns reasoning in a separate field for Thinking models
|
| 107 |
-
reasoning = getattr(message, 'reasoning_content', None) or ""
|
| 108 |
-
|
| 109 |
-
if reasoning:
|
| 110 |
-
# If content is empty, log a warning but don't try to extract from reasoning
|
| 111 |
-
# (the last line of reasoning is usually garbage, not the answer)
|
| 112 |
-
if not content.strip():
|
| 113 |
-
print(f"[DEBUG AGENT] Warning: LLM returned empty content with reasoning. This may indicate an issue.")
|
| 114 |
-
return content, reasoning
|
| 115 |
-
|
| 116 |
-
# Fallback: try parsing <think>...</think> tags from content
|
| 117 |
-
import re
|
| 118 |
-
think_match = re.match(r'<think>(.*?)</think>(.*)', content, re.DOTALL)
|
| 119 |
-
if think_match:
|
| 120 |
-
reasoning = think_match.group(1).strip()
|
| 121 |
-
final_content = think_match.group(2).strip()
|
| 122 |
-
return final_content, reasoning
|
| 123 |
-
|
| 124 |
-
# No reasoning found
|
| 125 |
-
return content, "No reasoning trace found"
|
| 126 |
-
|
| 127 |
-
return content
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
# ============================================================================
|
| 131 |
-
# NODES
|
| 132 |
-
# ============================================================================
|
| 133 |
-
|
| 134 |
-
def generate_initial_vibe(state: AgentState) -> AgentState:
|
| 135 |
-
"""Node: Generate initial vibe description from uploaded images using VLM"""
|
| 136 |
-
from prompts import VIBE_EXTRACTION
|
| 137 |
-
from utils import parse_json_response, extract_vibe_components
|
| 138 |
-
|
| 139 |
-
client = create_openai_client()
|
| 140 |
-
|
| 141 |
-
# Construct message with images
|
| 142 |
-
content = [{"type": "text", "text": "Analyze these images and extract the vibe:"}]
|
| 143 |
-
for img in state["images"]:
|
| 144 |
-
# Convert local file paths to base64 data URLs if needed
|
| 145 |
-
if img.startswith(('http://', 'https://', 'data:')):
|
| 146 |
-
# Already a valid URL
|
| 147 |
-
image_url = img
|
| 148 |
-
else:
|
| 149 |
-
# Local file path - convert to base64
|
| 150 |
-
import base64
|
| 151 |
-
from pathlib import Path
|
| 152 |
-
|
| 153 |
-
img_path = Path(img)
|
| 154 |
-
if img_path.exists():
|
| 155 |
-
with open(img_path, 'rb') as f:
|
| 156 |
-
img_data = base64.b64encode(f.read()).decode('utf-8')
|
| 157 |
-
# Determine MIME type from extension
|
| 158 |
-
ext = img_path.suffix.lower()
|
| 159 |
-
mime_types = {'.jpg': 'jpeg', '.jpeg': 'jpeg', '.png': 'png', '.gif': 'gif', '.webp': 'webp'}
|
| 160 |
-
mime = mime_types.get(ext, 'jpeg')
|
| 161 |
-
image_url = f"data:image/{mime};base64,{img_data}"
|
| 162 |
-
else:
|
| 163 |
-
state["reasoning"].append(f"⚠️ Warning: Image file not found: {img}")
|
| 164 |
-
continue
|
| 165 |
-
|
| 166 |
-
content.append({
|
| 167 |
-
"type": "image_url",
|
| 168 |
-
"image_url": {"url": image_url}
|
| 169 |
-
})
|
| 170 |
-
|
| 171 |
-
response = client.chat.completions.create(
|
| 172 |
-
model=VLM_MODEL,
|
| 173 |
-
messages=[
|
| 174 |
-
{"role": "system", "content": VIBE_EXTRACTION},
|
| 175 |
-
{"role": "user", "content": content}
|
| 176 |
-
],
|
| 177 |
-
temperature=0.7,
|
| 178 |
-
max_tokens=2000
|
| 179 |
-
)
|
| 180 |
-
|
| 181 |
-
vibe_json_str = response.choices[0].message.content
|
| 182 |
-
|
| 183 |
-
# Parse JSON response
|
| 184 |
-
vibe_json = parse_json_response(vibe_json_str)
|
| 185 |
-
if not vibe_json:
|
| 186 |
-
state["reasoning"].append(f"❌ Failed to parse vibe JSON. Raw response: {vibe_json_str[:200]}")
|
| 187 |
-
# Fallback to simple extraction
|
| 188 |
-
state["feels_like"] = vibe_json_str
|
| 189 |
-
state["aesthetic_genre_keywords"] = []
|
| 190 |
-
state["mood_atmosphere"] = []
|
| 191 |
-
state["core_themes"] = []
|
| 192 |
-
state["tropes"] = []
|
| 193 |
-
else:
|
| 194 |
-
# Extract components
|
| 195 |
-
components = extract_vibe_components(vibe_json)
|
| 196 |
-
state["aesthetic_genre_keywords"] = components["aesthetic_genre_keywords"]
|
| 197 |
-
state["mood_atmosphere"] = components["mood_atmosphere"]
|
| 198 |
-
state["core_themes"] = components["core_themes"]
|
| 199 |
-
state["tropes"] = components["tropes"]
|
| 200 |
-
state["feels_like"] = components["feels_like"]
|
| 201 |
-
|
| 202 |
-
state["reasoning"].append(f"✅ Extracted vibe components:\n"
|
| 203 |
-
f" - Aesthetics: {', '.join(state['aesthetic_genre_keywords'])}\n"
|
| 204 |
-
f" - Mood: {', '.join(state['mood_atmosphere'])}\n"
|
| 205 |
-
f" - Themes: {', '.join(state['core_themes'])}\n"
|
| 206 |
-
f" - Tropes: {', '.join(state['tropes'])}")
|
| 207 |
-
|
| 208 |
-
state["vibe_refinement_count"] = 0
|
| 209 |
-
|
| 210 |
-
# Only show feels_like to user
|
| 211 |
-
assistant_message = f"Here's the vibe I'm getting from your images:\n\n{state['feels_like']}\n\nDoes this capture what you're looking for, or would you like me to adjust it?"
|
| 212 |
-
state["messages"].append({
|
| 213 |
-
"role": "assistant",
|
| 214 |
-
"content": assistant_message
|
| 215 |
-
})
|
| 216 |
-
|
| 217 |
-
# Wait for user feedback; when resumed, user_response will contain their reply
|
| 218 |
-
user_response = interrupt(assistant_message)
|
| 219 |
-
if user_response:
|
| 220 |
-
state["messages"].append({"role": "user", "content": user_response})
|
| 221 |
-
|
| 222 |
-
return state
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
def refine_vibe(state: AgentState) -> AgentState:
|
| 226 |
-
"""Node: Refine vibe based on user feedback - only refines feels_like portion"""
|
| 227 |
-
from prompts import VIBE_REFINEMENT
|
| 228 |
-
from utils import strip_thinking_tags
|
| 229 |
-
|
| 230 |
-
print("[DEBUG AGENT] refine_vibe node started")
|
| 231 |
-
|
| 232 |
-
# Get the latest user message (feedback)
|
| 233 |
-
user_messages = [m for m in state["messages"] if m.get("role") == "user"]
|
| 234 |
-
print(f"[DEBUG AGENT] Found {len(user_messages)} user messages")
|
| 235 |
-
if not user_messages:
|
| 236 |
-
state["reasoning"].append("⚠️ No user feedback found for refinement; skipping refine_vibe step")
|
| 237 |
-
return state
|
| 238 |
-
|
| 239 |
-
user_feedback = user_messages[-1]["content"]
|
| 240 |
-
print(f"[DEBUG AGENT] user_feedback: {user_feedback[:50] if user_feedback else 'None'}...")
|
| 241 |
-
|
| 242 |
-
# Use LLM to refine only the feels_like description
|
| 243 |
-
# Keep other vibe components (aesthetics, themes, tropes) unchanged
|
| 244 |
-
messages = [
|
| 245 |
-
{"role": "system", "content": VIBE_REFINEMENT},
|
| 246 |
-
{"role": "user", "content": f"Current 'feels like' description: {state['feels_like']}\n\nUser feedback: {user_feedback}\n\nProvide the refined 'feels like' description (4-5 sentences):"}
|
| 247 |
-
]
|
| 248 |
-
|
| 249 |
-
print(f"[DEBUG AGENT] Calling LLM for refinement...")
|
| 250 |
-
refined_feels_like, reasoning = call_llm(messages, temperature=0.7, include_reasoning=True)
|
| 251 |
-
print(f"[DEBUG AGENT] LLM returned content: {refined_feels_like[:200] if refined_feels_like else 'None'}...")
|
| 252 |
-
print(f"[DEBUG AGENT] LLM reasoning: {reasoning[:200] if reasoning else 'None'}...")
|
| 253 |
-
|
| 254 |
-
# Ensure no thinking tags leak into the feels_like
|
| 255 |
-
refined_feels_like = strip_thinking_tags(refined_feels_like)
|
| 256 |
-
|
| 257 |
-
# Update only the feels_like portion
|
| 258 |
-
state["feels_like"] = refined_feels_like
|
| 259 |
-
state["vibe_refinement_count"] += 1
|
| 260 |
-
|
| 261 |
-
assistant_message = f"I've refined the vibe:\n\n{refined_feels_like}\n\nIs this better, or would you like further adjustments?"
|
| 262 |
-
print(f"[DEBUG AGENT] Adding assistant message to state, current msg count: {len(state['messages'])}")
|
| 263 |
-
state["messages"].append({
|
| 264 |
-
"role": "assistant",
|
| 265 |
-
"content": assistant_message
|
| 266 |
-
})
|
| 267 |
-
state["reasoning"].append(f"🧠 REASONING (Vibe Refinement #{state['vibe_refinement_count']}):\n{reasoning}\n")
|
| 268 |
-
print(f"[DEBUG AGENT] After append, msg count: {len(state['messages'])}")
|
| 269 |
-
|
| 270 |
-
# Wait for user feedback on the refined vibe
|
| 271 |
-
print(f"[DEBUG AGENT] About to call interrupt()")
|
| 272 |
-
user_response = interrupt(assistant_message)
|
| 273 |
-
print(f"[DEBUG AGENT] interrupt() returned: {user_response}")
|
| 274 |
-
if user_response:
|
| 275 |
-
state["messages"].append({"role": "user", "content": user_response})
|
| 276 |
-
|
| 277 |
-
return state
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
def check_vibe_satisfaction(state: AgentState) -> Literal["refine", "retrieve"]:
|
| 281 |
-
"""Conditional edge: Check if user is satisfied with vibe description"""
|
| 282 |
-
from prompts import VIBE_SATISFACTION_CHECKER
|
| 283 |
-
|
| 284 |
-
# Get the last user message
|
| 285 |
-
user_messages = [m for m in state["messages"] if m.get("role") == "user"]
|
| 286 |
-
if not user_messages:
|
| 287 |
-
# No explicit feedback; default to moving forward
|
| 288 |
-
return "retrieve"
|
| 289 |
-
|
| 290 |
-
raw_content = user_messages[-1]["content"]
|
| 291 |
-
|
| 292 |
-
# Content may occasionally be a non-string (e.g., list from upstream tools);
|
| 293 |
-
# normalize to text before passing into the LLM.
|
| 294 |
-
if isinstance(raw_content, str):
|
| 295 |
-
last_user_msg = raw_content
|
| 296 |
-
elif isinstance(raw_content, list):
|
| 297 |
-
# Join any text-like chunks into a single string representation
|
| 298 |
-
last_user_msg = " ".join(str(x) for x in raw_content)
|
| 299 |
-
else:
|
| 300 |
-
last_user_msg = str(raw_content)
|
| 301 |
-
|
| 302 |
-
# Use LLM to determine satisfaction
|
| 303 |
-
messages = [
|
| 304 |
-
{"role": "system", "content": VIBE_SATISFACTION_CHECKER},
|
| 305 |
-
{"role": "user", "content": f"User's response: {last_user_msg}"}
|
| 306 |
-
]
|
| 307 |
-
|
| 308 |
-
decision, reasoning = call_llm(messages, temperature=0.0, include_reasoning=True)
|
| 309 |
-
decision = decision.strip().lower() if decision else ""
|
| 310 |
-
|
| 311 |
-
print(f"[DEBUG] check_vibe_satisfaction - user said: '{last_user_msg}'")
|
| 312 |
-
print(f"[DEBUG] check_vibe_satisfaction - LLM decision: '{decision}'")
|
| 313 |
-
|
| 314 |
-
state["reasoning"].append(f"🧠 REASONING (Satisfaction Check):\n{reasoning}\n\n→ Decision: {decision}")
|
| 315 |
-
|
| 316 |
-
if "satisfied" in decision and "not_satisfied" not in decision:
|
| 317 |
-
print(f"[DEBUG] check_vibe_satisfaction -> RETRIEVE (user satisfied)")
|
| 318 |
-
return "retrieve"
|
| 319 |
-
else:
|
| 320 |
-
print(f"[DEBUG] check_vibe_satisfaction -> REFINE (user not satisfied)")
|
| 321 |
-
return "refine"
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
def retrieve_books(state: AgentState) -> AgentState:
|
| 325 |
-
"""Node: Retrieve books from Modal vector store"""
|
| 326 |
-
import requests
|
| 327 |
-
|
| 328 |
-
# Construct full vibe query from all components
|
| 329 |
-
vibe_query = f"{state['feels_like']}\n\nGenres/Aesthetics: {', '.join(state['aesthetic_genre_keywords'])}\nMood: {', '.join(state['mood_atmosphere'])}\nThemes: {', '.join(state['core_themes'])}\nTropes: {', '.join(state['tropes'])}"
|
| 330 |
-
|
| 331 |
-
try:
|
| 332 |
-
# Call Modal vector store endpoint
|
| 333 |
-
print(f"DEBUG: Calling Modal URL: {MODAL_VECTOR_STORE_URL}")
|
| 334 |
-
state["reasoning"].append(f"📚 Calling Modal vector store with full vibe profile")
|
| 335 |
-
state["reasoning"].append(f"URL: {MODAL_VECTOR_STORE_URL}")
|
| 336 |
-
|
| 337 |
-
response = requests.post(
|
| 338 |
-
MODAL_VECTOR_STORE_URL,
|
| 339 |
-
json={
|
| 340 |
-
"query": vibe_query,
|
| 341 |
-
"top_k": NUM_BOOKS_TO_RETRIEVE,
|
| 342 |
-
"min_books_per_vibe": 1
|
| 343 |
-
},
|
| 344 |
-
timeout=180 # Long timeout for cold start
|
| 345 |
-
)
|
| 346 |
-
|
| 347 |
-
print(f"DEBUG: Response status: {response.status_code}")
|
| 348 |
-
print(f"DEBUG: Response text: {response.text[:500] if response.text else 'empty'}")
|
| 349 |
-
|
| 350 |
-
if response.status_code == 200:
|
| 351 |
-
data = response.json()
|
| 352 |
-
|
| 353 |
-
# Extract books from search results with diversity across vibes
|
| 354 |
-
# Modal returns: {"results": [{"books": [...], "vibe_data": {...}, "score": ...}], ...}
|
| 355 |
-
# Strategy: Take up to MAX_BOOKS_PER_VIBE from each vibe to ensure diversity
|
| 356 |
-
MAX_BOOKS_PER_VIBE = 5
|
| 357 |
-
|
| 358 |
-
books = []
|
| 359 |
-
seen = set() # Track seen books for deduplication
|
| 360 |
-
|
| 361 |
-
for result in data.get("results", []):
|
| 362 |
-
vibe_score = result.get("score", 0)
|
| 363 |
-
vibe_books = result.get("books", [])
|
| 364 |
-
books_from_this_vibe = 0
|
| 365 |
-
|
| 366 |
-
for book in vibe_books:
|
| 367 |
-
if books_from_this_vibe >= MAX_BOOKS_PER_VIBE:
|
| 368 |
-
break
|
| 369 |
-
|
| 370 |
-
title = book.get("title", "")
|
| 371 |
-
author = book.get("author", "")
|
| 372 |
-
key = (title.lower(), author.lower())
|
| 373 |
-
|
| 374 |
-
# Skip duplicates
|
| 375 |
-
if key in seen:
|
| 376 |
-
continue
|
| 377 |
-
|
| 378 |
-
seen.add(key)
|
| 379 |
-
books.append({
|
| 380 |
-
"title": title,
|
| 381 |
-
"author": author,
|
| 382 |
-
"vibe_score": vibe_score # Track which vibe it came from
|
| 383 |
-
})
|
| 384 |
-
books_from_this_vibe += 1
|
| 385 |
-
|
| 386 |
-
# Fetch extra books to account for filtering (books without descriptions)
|
| 387 |
-
books = books[:NUM_BOOKS_TO_FETCH]
|
| 388 |
-
|
| 389 |
-
state["reasoning"].append(f"Retrieved {len(books)} books from {len(data.get('results', []))} vibes (max {MAX_BOOKS_PER_VIBE} per vibe)")
|
| 390 |
-
|
| 391 |
-
else:
|
| 392 |
-
raise Exception(f"HTTP {response.status_code}: {response.text[:200]}")
|
| 393 |
-
|
| 394 |
-
except Exception as e:
|
| 395 |
-
# Fallback to mock data for development
|
| 396 |
-
print(f"DEBUG ERROR: Vector store call failed: {e}")
|
| 397 |
-
import traceback
|
| 398 |
-
traceback.print_exc()
|
| 399 |
-
state["reasoning"].append(f"Vector store call failed: {e}. Using mock data.")
|
| 400 |
-
books = [
|
| 401 |
-
{"title": "The Night Circus", "author": "Erin Morgenstern"},
|
| 402 |
-
{"title": "The Ocean at the End of the Lane", "author": "Neil Gaiman"},
|
| 403 |
-
{"title": "The Starless Sea", "author": "Erin Morgenstern"},
|
| 404 |
-
{"title": "Piranesi", "author": "Susanna Clarke"},
|
| 405 |
-
{"title": "The House in the Cerulean Sea", "author": "TJ Klune"},
|
| 406 |
-
{"title": "Howl's Moving Castle", "author": "Diana Wynne Jones"},
|
| 407 |
-
{"title": "Circe", "author": "Madeline Miller"},
|
| 408 |
-
{"title": "The Invisible Life of Addie LaRue", "author": "V.E. Schwab"},
|
| 409 |
-
{"title": "Mexican Gothic", "author": "Silvia Moreno-Garcia"},
|
| 410 |
-
{"title": "The Ten Thousand Doors of January", "author": "Alix E. Harrow"},
|
| 411 |
-
{"title": "The Goblin Emperor", "author": "Katherine Addison"},
|
| 412 |
-
{"title": "The Priory of the Orange Tree", "author": "Samantha Shannon"},
|
| 413 |
-
{"title": "Uprooted", "author": "Naomi Novik"},
|
| 414 |
-
{"title": "The Bear and the Nightingale", "author": "Katherine Arden"},
|
| 415 |
-
{"title": "The City of Brass", "author": "S.A. Chakraborty"}
|
| 416 |
-
]
|
| 417 |
-
|
| 418 |
-
state["retrieved_books"] = books
|
| 419 |
-
state["reasoning"].append(f"Total books in state: {len(books)}")
|
| 420 |
-
|
| 421 |
-
return state
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
def call_google_books_mcp(title: str, author: str = "") -> Dict[str, Any]:
|
| 425 |
-
"""
|
| 426 |
-
Call the Google Books MCP server via Gradio MCP endpoint.
|
| 427 |
-
|
| 428 |
-
Args:
|
| 429 |
-
title: Book title
|
| 430 |
-
author: Book author (optional)
|
| 431 |
-
|
| 432 |
-
Returns:
|
| 433 |
-
Book metadata dict or None if not found
|
| 434 |
-
"""
|
| 435 |
-
import requests
|
| 436 |
-
|
| 437 |
-
try:
|
| 438 |
-
# Gradio MCP endpoint (Streamable HTTP transport)
|
| 439 |
-
mcp_url = f"{GOOGLE_BOOKS_MCP_URL}/gradio_api/mcp/"
|
| 440 |
-
|
| 441 |
-
# MCP uses JSON-RPC style calls
|
| 442 |
-
payload = {
|
| 443 |
-
"jsonrpc": "2.0",
|
| 444 |
-
"method": "tools/call",
|
| 445 |
-
"params": {
|
| 446 |
-
"name": "google_books_mcp_search_book_by_title_author",
|
| 447 |
-
"arguments": {
|
| 448 |
-
"title": title,
|
| 449 |
-
"author": author
|
| 450 |
-
}
|
| 451 |
-
},
|
| 452 |
-
"id": 1
|
| 453 |
-
}
|
| 454 |
-
|
| 455 |
-
response = requests.post(
|
| 456 |
-
mcp_url,
|
| 457 |
-
json=payload,
|
| 458 |
-
headers={
|
| 459 |
-
"Content-Type": "application/json",
|
| 460 |
-
"Accept": "application/json, text/event-stream"
|
| 461 |
-
},
|
| 462 |
-
timeout=30
|
| 463 |
-
)
|
| 464 |
-
|
| 465 |
-
if response.status_code != 200:
|
| 466 |
-
print(f"[DEBUG] Google Books MCP failed: {response.status_code} - {response.text[:200]}")
|
| 467 |
-
return None
|
| 468 |
-
|
| 469 |
-
# Parse SSE response
|
| 470 |
-
for line in response.text.split('\n'):
|
| 471 |
-
if line.startswith('data: '):
|
| 472 |
-
try:
|
| 473 |
-
data = json.loads(line[6:])
|
| 474 |
-
if "result" in data:
|
| 475 |
-
result = data["result"]
|
| 476 |
-
if isinstance(result, dict):
|
| 477 |
-
# Check if it's a direct book response
|
| 478 |
-
if "success" in result and "book" in result:
|
| 479 |
-
if result.get("success") and result.get("book"):
|
| 480 |
-
return result["book"]
|
| 481 |
-
# Check if it's a content array response
|
| 482 |
-
elif "content" in result:
|
| 483 |
-
for content_item in result["content"]:
|
| 484 |
-
if content_item.get("type") == "text":
|
| 485 |
-
text_content = content_item.get("text", "")
|
| 486 |
-
if text_content.strip():
|
| 487 |
-
try:
|
| 488 |
-
book_data = json.loads(text_content)
|
| 489 |
-
if book_data.get("success") and book_data.get("found"):
|
| 490 |
-
return book_data.get("book")
|
| 491 |
-
except json.JSONDecodeError:
|
| 492 |
-
continue
|
| 493 |
-
return result
|
| 494 |
-
except json.JSONDecodeError:
|
| 495 |
-
continue
|
| 496 |
-
|
| 497 |
-
return None
|
| 498 |
-
|
| 499 |
-
except Exception as e:
|
| 500 |
-
print(f"[DEBUG] Google Books MCP error: {e}")
|
| 501 |
-
return None
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
def fetch_book_metadata(state: AgentState) -> AgentState:
|
| 507 |
-
"""Node: Fetch metadata for retrieved books via Google Books API"""
|
| 508 |
-
print(f"[DEBUG AGENT] fetch_book_metadata node started with {len(state.get('retrieved_books', []))} books")
|
| 509 |
-
|
| 510 |
-
enriched_books = []
|
| 511 |
-
skipped_books = []
|
| 512 |
-
state["reasoning"].append(f"📖 Fetching metadata from Google Books (need {NUM_BOOKS_TO_RETRIEVE} with descriptions)...")
|
| 513 |
-
|
| 514 |
-
for book in state["retrieved_books"]:
|
| 515 |
-
# Stop once we have enough books with valid descriptions
|
| 516 |
-
if len(enriched_books) >= NUM_BOOKS_TO_RETRIEVE:
|
| 517 |
-
print(f"[DEBUG] Reached target of {NUM_BOOKS_TO_RETRIEVE} books, stopping")
|
| 518 |
-
break
|
| 519 |
-
|
| 520 |
-
try:
|
| 521 |
-
# Use Google Books MCP server
|
| 522 |
-
metadata = call_google_books_mcp(book['title'], book['author'])
|
| 523 |
-
|
| 524 |
-
if metadata and metadata.get("title"):
|
| 525 |
-
description = metadata.get("description", "")
|
| 526 |
-
|
| 527 |
-
# FILTER: Skip books without meaningful descriptions
|
| 528 |
-
if not description or len(description.strip()) < 50:
|
| 529 |
-
skipped_books.append(book['title'])
|
| 530 |
-
print(f"[DEBUG] Skipping '{book['title']}' - no/short description ({len(description.strip()) if description else 0} chars)")
|
| 531 |
-
continue
|
| 532 |
-
|
| 533 |
-
# Format authors as string
|
| 534 |
-
authors = metadata.get("authors", [])
|
| 535 |
-
author_str = ", ".join(authors) if isinstance(authors, list) else authors or book["author"]
|
| 536 |
-
|
| 537 |
-
enriched_books.append({
|
| 538 |
-
"title": metadata.get("title", book["title"]),
|
| 539 |
-
"author": author_str,
|
| 540 |
-
"description": description,
|
| 541 |
-
"cover_url": metadata.get("thumbnail"),
|
| 542 |
-
"isbn": metadata.get("isbn"),
|
| 543 |
-
"published_year": metadata.get("published_date", "")[:4] if metadata.get("published_date") else None,
|
| 544 |
-
"page_count": metadata.get("page_count"),
|
| 545 |
-
"categories": metadata.get("categories", []),
|
| 546 |
-
"preview_link": metadata.get("preview_link"),
|
| 547 |
-
"info_link": metadata.get("info_link")
|
| 548 |
-
})
|
| 549 |
-
print(f"[DEBUG] Found metadata for: {book['title']} ({len(description)} chars) [{len(enriched_books)}/{NUM_BOOKS_TO_RETRIEVE}]")
|
| 550 |
-
else:
|
| 551 |
-
# No results found - skip
|
| 552 |
-
skipped_books.append(book['title'])
|
| 553 |
-
print(f"[DEBUG] Skipping '{book['title']}' - no Google Books results")
|
| 554 |
-
|
| 555 |
-
except Exception as e:
|
| 556 |
-
# On any error, skip the book
|
| 557 |
-
skipped_books.append(book['title'])
|
| 558 |
-
state["reasoning"].append(f"Error fetching metadata for '{book['title']}': {str(e)}")
|
| 559 |
-
|
| 560 |
-
state["books_with_metadata"] = enriched_books
|
| 561 |
-
|
| 562 |
-
if skipped_books:
|
| 563 |
-
state["reasoning"].append(f"⚠️ Skipped {len(skipped_books)} books without descriptions")
|
| 564 |
-
state["reasoning"].append(f"✅ Found {len(enriched_books)}/{NUM_BOOKS_TO_RETRIEVE} books with full metadata")
|
| 565 |
-
|
| 566 |
-
return state
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
def _generate_narrowing_question(state: AgentState, question_num: int) -> tuple:
|
| 570 |
-
"""Helper: Generate a narrowing question"""
|
| 571 |
-
from prompts import NARROWING_QUESTION_GENERATOR
|
| 572 |
-
|
| 573 |
-
books_summary_parts = []
|
| 574 |
-
for i, b in enumerate(state["books_with_metadata"], 1):
|
| 575 |
-
desc = b.get('description', 'No description')
|
| 576 |
-
cats = ', '.join(b.get('categories', [])) if b.get('categories') else 'Uncategorized'
|
| 577 |
-
books_summary_parts.append(f"Book {i}: {b['title']} by {b['author']}\n Categories: {cats}\n Description: {desc}")
|
| 578 |
-
books_summary = "\n\n".join(books_summary_parts)
|
| 579 |
-
|
| 580 |
-
vibe_context = f"Feels like: {state['feels_like']}\nAesthetics: {', '.join(state['aesthetic_genre_keywords'])}\nMood: {', '.join(state['mood_atmosphere'])}\nThemes: {', '.join(state['core_themes'])}"
|
| 581 |
-
|
| 582 |
-
is_last = question_num >= 2
|
| 583 |
-
question_context = f"This is question {question_num} of 2." + (" THIS IS THE LAST QUESTION - make it count!" if is_last else "")
|
| 584 |
-
|
| 585 |
-
user_prompt = f"Books to narrow down:\n{books_summary}\n\nVibe:\n{vibe_context}\n\nPrevious preferences: {json.dumps(state.get('user_preferences', {}), indent=2)}\n\n{question_context}\n\nGenerate an either/or question:"
|
| 586 |
-
|
| 587 |
-
messages = [
|
| 588 |
-
{"role": "system", "content": NARROWING_QUESTION_GENERATOR},
|
| 589 |
-
{"role": "user", "content": user_prompt}
|
| 590 |
-
]
|
| 591 |
-
|
| 592 |
-
return call_llm(messages, temperature=0.8, model=FAST_MODEL, include_reasoning=True)
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
def generate_question_1(state: AgentState) -> AgentState:
|
| 596 |
-
"""Node: Generate Q1 and add to messages"""
|
| 597 |
-
print(f"[DEBUG AGENT] generate_question_1")
|
| 598 |
-
|
| 599 |
-
question, reasoning = _generate_narrowing_question(state, 1)
|
| 600 |
-
|
| 601 |
-
state["narrowing_questions_asked"] = 1
|
| 602 |
-
state["q1_question"] = question
|
| 603 |
-
state["reasoning"].append(f"🧠 REASONING (Narrowing Question #1):\n{reasoning}\n\n→ Question: {question}")
|
| 604 |
-
|
| 605 |
-
assistant_message = f"To help me find the perfect match:\n\n{question}"
|
| 606 |
-
print(f"[DEBUG AGENT] Q1: {question[:60]}...")
|
| 607 |
-
|
| 608 |
-
state["messages"].append({"role": "assistant", "content": assistant_message})
|
| 609 |
-
return state
|
| 610 |
-
|
| 611 |
-
|
| 612 |
-
def wait_for_answer_1(state: AgentState) -> AgentState:
|
| 613 |
-
"""Node: Wait for user's answer to Q1"""
|
| 614 |
-
print(f"[DEBUG AGENT] wait_for_answer_1")
|
| 615 |
-
|
| 616 |
-
user_answer = interrupt("Waiting for Q1 answer")
|
| 617 |
-
if user_answer:
|
| 618 |
-
state["messages"].append({"role": "user", "content": user_answer})
|
| 619 |
-
state["user_preferences"]["q1"] = {
|
| 620 |
-
"question": state.get("q1_question", ""),
|
| 621 |
-
"answer": user_answer
|
| 622 |
-
}
|
| 623 |
-
print(f"[DEBUG AGENT] Q1 answered: {user_answer}")
|
| 624 |
-
return state
|
| 625 |
-
|
| 626 |
-
|
| 627 |
-
def generate_question_2(state: AgentState) -> AgentState:
|
| 628 |
-
"""Node: Generate Q2 and add to messages"""
|
| 629 |
-
print(f"[DEBUG AGENT] generate_question_2")
|
| 630 |
-
|
| 631 |
-
question, reasoning = _generate_narrowing_question(state, 2)
|
| 632 |
-
|
| 633 |
-
state["narrowing_questions_asked"] = 2
|
| 634 |
-
state["q2_question"] = question
|
| 635 |
-
state["reasoning"].append(f"🧠 REASONING (Narrowing Question #2):\n{reasoning}\n\n→ Question: {question}")
|
| 636 |
-
|
| 637 |
-
assistant_message = f"To help me find the perfect match:\n\n{question}"
|
| 638 |
-
print(f"[DEBUG AGENT] Q2: {question[:60]}...")
|
| 639 |
-
|
| 640 |
-
state["messages"].append({"role": "assistant", "content": assistant_message})
|
| 641 |
-
return state
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
def wait_for_answer_2(state: AgentState) -> AgentState:
|
| 645 |
-
"""Node: Wait for user's answer to Q2"""
|
| 646 |
-
print(f"[DEBUG AGENT] wait_for_answer_2")
|
| 647 |
-
|
| 648 |
-
user_answer = interrupt("Waiting for Q2 answer")
|
| 649 |
-
if user_answer:
|
| 650 |
-
state["messages"].append({"role": "user", "content": user_answer})
|
| 651 |
-
state["user_preferences"]["q2"] = {
|
| 652 |
-
"question": state.get("q2_question", ""),
|
| 653 |
-
"answer": user_answer
|
| 654 |
-
}
|
| 655 |
-
print(f"[DEBUG AGENT] Q2 answered: {user_answer}")
|
| 656 |
-
return state
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
def check_narrowing_complete(state: AgentState) -> Literal["ask_more", "finalize"]:
|
| 660 |
-
"""Conditional edge: Check if we've asked all 2 narrowing questions"""
|
| 661 |
-
questions_asked = state.get("narrowing_questions_asked", 0)
|
| 662 |
-
if questions_asked >= 2:
|
| 663 |
-
return "finalize"
|
| 664 |
-
return "ask_more"
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
def finalize_books(state: AgentState) -> AgentState:
|
| 670 |
-
"""Node: Use reasoning to select final 3 books based on vibe and preferences"""
|
| 671 |
-
print(f"[DEBUG AGENT] finalize_books node started")
|
| 672 |
-
print(f"[DEBUG AGENT] books_with_metadata count: {len(state.get('books_with_metadata', []))}")
|
| 673 |
-
from prompts import get_book_finalizer_prompt
|
| 674 |
-
|
| 675 |
-
# Build detailed book summary with full descriptions - no truncation
|
| 676 |
-
books_summary_parts = []
|
| 677 |
-
for i, b in enumerate(state["books_with_metadata"]):
|
| 678 |
-
desc = b.get('description', 'No description available')
|
| 679 |
-
cats = ', '.join(b.get('categories', [])) if b.get('categories') else 'Uncategorized'
|
| 680 |
-
books_summary_parts.append(f"{i+1}. {b['title']} by {b['author']}\n Categories: {cats}\n Description: {desc}")
|
| 681 |
-
books_summary = "\n\n".join(books_summary_parts)
|
| 682 |
-
|
| 683 |
-
prefs_summary = json.dumps(state.get("user_preferences", {}), indent=2)
|
| 684 |
-
vibe_context = f"Feels like: {state['feels_like']}\nAesthetics: {', '.join(state['aesthetic_genre_keywords'])}\nMood: {', '.join(state['mood_atmosphere'])}\nThemes: {', '.join(state['core_themes'])}\nTropes: {', '.join(state['tropes'])}"
|
| 685 |
-
|
| 686 |
-
user_prompt = f"Vibe:\n{vibe_context}\n\nCandidate Books:\n{books_summary}\n\nUser Preferences (from Q&A):\n{prefs_summary}\n\nSelect the {NUM_FINAL_BOOKS} best matches (return only JSON array):"
|
| 687 |
-
|
| 688 |
-
messages = [
|
| 689 |
-
{"role": "system", "content": get_book_finalizer_prompt(NUM_FINAL_BOOKS)},
|
| 690 |
-
{"role": "user", "content": user_prompt}
|
| 691 |
-
]
|
| 692 |
-
|
| 693 |
-
print(f"[DEBUG AGENT] finalize_books user_prompt:\n{user_prompt}")
|
| 694 |
-
|
| 695 |
-
# Use reasoning model for book selection - this is a complex decision
|
| 696 |
-
# Increase max_tokens since we're sending full book descriptions
|
| 697 |
-
selection_response, reasoning = call_llm(messages, temperature=0.3, model=REASONING_MODEL, include_reasoning=True, max_tokens=4000)
|
| 698 |
-
|
| 699 |
-
# Log reasoning even if empty
|
| 700 |
-
state["reasoning"].append(f"🧠 REASONING (Book Selection):\n{reasoning or 'No reasoning provided'}")
|
| 701 |
-
|
| 702 |
-
# Parse the JSON response - check both content and reasoning for the array
|
| 703 |
-
try:
|
| 704 |
-
import re
|
| 705 |
-
# First try to find JSON array in the response content
|
| 706 |
-
json_match = re.search(r'\[([\d,\s]+)\]', selection_response)
|
| 707 |
-
|
| 708 |
-
# If not found in content, try to find it in reasoning (some models put answer there)
|
| 709 |
-
if not json_match and reasoning:
|
| 710 |
-
json_match = re.search(r'\[([\d,\s]+)\]', reasoning)
|
| 711 |
-
if json_match:
|
| 712 |
-
print(f"[DEBUG AGENT] Found JSON in reasoning instead of content")
|
| 713 |
-
|
| 714 |
-
if json_match:
|
| 715 |
-
indices = json.loads(json_match.group(0))
|
| 716 |
-
selected_books = [state["books_with_metadata"][i-1] for i in indices if 0 < i <= len(state["books_with_metadata"])][:NUM_FINAL_BOOKS]
|
| 717 |
-
else:
|
| 718 |
-
# Fallback to first 3 books
|
| 719 |
-
print(f"[DEBUG AGENT] No JSON array found, using first 3 books")
|
| 720 |
-
selected_books = state["books_with_metadata"][:NUM_FINAL_BOOKS]
|
| 721 |
-
except Exception as e:
|
| 722 |
-
state["reasoning"].append(f"❌ Failed to parse book selection: {e}. Using first 3 books.")
|
| 723 |
-
selected_books = state["books_with_metadata"][:NUM_FINAL_BOOKS]
|
| 724 |
-
|
| 725 |
-
state["final_books"] = selected_books
|
| 726 |
-
state["reasoning"].append(f"🧠 REASONING (Book Selection):\n{reasoning}\n\n→ Selected: {[b['title'] for b in selected_books]}")
|
| 727 |
-
|
| 728 |
-
return state
|
| 729 |
-
|
| 730 |
-
|
| 731 |
-
def generate_soundtrack(state: AgentState) -> AgentState:
|
| 732 |
-
"""Node: Generate ambient soundtrack using ElevenLabs Music API"""
|
| 733 |
-
print(f"[DEBUG AGENT] generate_soundtrack node started")
|
| 734 |
-
|
| 735 |
-
import requests
|
| 736 |
-
import tempfile
|
| 737 |
-
|
| 738 |
-
ELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY")
|
| 739 |
-
print(f"[DEBUG AGENT] ELEVENLABS_API_KEY present: {bool(ELEVENLABS_API_KEY)}")
|
| 740 |
-
|
| 741 |
-
if not ELEVENLABS_API_KEY:
|
| 742 |
-
print(f"[DEBUG AGENT] No ELEVENLABS_API_KEY - skipping")
|
| 743 |
-
state["reasoning"].append("⚠️ ELEVENLABS_API_KEY not set - skipping soundtrack generation")
|
| 744 |
-
state["soundtrack_url"] = ""
|
| 745 |
-
return state
|
| 746 |
-
|
| 747 |
-
try:
|
| 748 |
-
# Build vibe context for music prompt generation
|
| 749 |
-
vibe_context = {
|
| 750 |
-
"feels_like": state["feels_like"],
|
| 751 |
-
"mood_atmosphere": state["mood_atmosphere"],
|
| 752 |
-
"aesthetic_genre_keywords": state["aesthetic_genre_keywords"],
|
| 753 |
-
"core_themes": state["core_themes"],
|
| 754 |
-
"tropes": state["tropes"]
|
| 755 |
-
}
|
| 756 |
-
print(f"[DEBUG AGENT] vibe_context built: {list(vibe_context.keys())}")
|
| 757 |
-
|
| 758 |
-
# Use LLM to generate music prompt from vibe context
|
| 759 |
-
from prompts import MUSIC_PROMPT_GENERATION
|
| 760 |
-
|
| 761 |
-
messages = [
|
| 762 |
-
{"role": "system", "content": MUSIC_PROMPT_GENERATION},
|
| 763 |
-
{"role": "user", "content": f"Generate a music prompt based on this vibe:\n{json.dumps(vibe_context, indent=2)}"}
|
| 764 |
-
]
|
| 765 |
-
|
| 766 |
-
print(f"[DEBUG AGENT] Calling LLM for music prompt...")
|
| 767 |
-
music_prompt, reasoning = call_llm(messages, temperature=0.7, model=FAST_MODEL, include_reasoning=True)
|
| 768 |
-
print(f"[DEBUG AGENT] Music prompt generated: {music_prompt[:100] if music_prompt else 'None'}...")
|
| 769 |
-
state["reasoning"].append(f"🎵 Music prompt: {music_prompt}")
|
| 770 |
-
|
| 771 |
-
# Call ElevenLabs Music API directly
|
| 772 |
-
print(f"[DEBUG AGENT] Calling ElevenLabs Music API...")
|
| 773 |
-
state["reasoning"].append(f"🎵 Calling ElevenLabs Music API...")
|
| 774 |
-
|
| 775 |
-
response = requests.post(
|
| 776 |
-
"https://api.elevenlabs.io/v1/music",
|
| 777 |
-
headers={
|
| 778 |
-
"xi-api-key": ELEVENLABS_API_KEY,
|
| 779 |
-
"Content-Type": "application/json"
|
| 780 |
-
},
|
| 781 |
-
json={
|
| 782 |
-
"prompt": music_prompt,
|
| 783 |
-
"music_length_ms": 90000, # 1:30 minute
|
| 784 |
-
"force_instrumental": True # No vocals, just ambient music
|
| 785 |
-
},
|
| 786 |
-
timeout=120 # Music generation can take a while
|
| 787 |
-
)
|
| 788 |
-
|
| 789 |
-
print(f"[DEBUG AGENT] ElevenLabs response status: {response.status_code}")
|
| 790 |
-
|
| 791 |
-
if response.status_code == 200:
|
| 792 |
-
print(f"[DEBUG AGENT] Success! Response size: {len(response.content)} bytes")
|
| 793 |
-
# Save the audio data to a temp file
|
| 794 |
-
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp3')
|
| 795 |
-
temp_file.write(response.content)
|
| 796 |
-
temp_file.close()
|
| 797 |
-
print(f"[DEBUG AGENT] Saved to temp file: {temp_file.name}")
|
| 798 |
-
|
| 799 |
-
state["soundtrack_url"] = temp_file.name
|
| 800 |
-
state["reasoning"].append(f"✅ Generated soundtrack successfully ({len(response.content)} bytes)")
|
| 801 |
-
else:
|
| 802 |
-
print(f"[DEBUG AGENT] ElevenLabs API error: {response.status_code} - {response.text[:500]}")
|
| 803 |
-
state["reasoning"].append(f"❌ ElevenLabs API error: {response.status_code} - {response.text[:200]}")
|
| 804 |
-
state["soundtrack_url"] = ""
|
| 805 |
-
|
| 806 |
-
except Exception as e:
|
| 807 |
-
import traceback
|
| 808 |
-
print(f"[DEBUG AGENT] Exception in generate_soundtrack: {e}")
|
| 809 |
-
traceback.print_exc()
|
| 810 |
-
state["reasoning"].append(f"❌ Failed to generate soundtrack: {e}")
|
| 811 |
-
state["soundtrack_url"] = ""
|
| 812 |
-
|
| 813 |
-
print(f"[DEBUG AGENT] generate_soundtrack finished, soundtrack_url: {state.get('soundtrack_url', 'not set')}")
|
| 814 |
-
return state
|
| 815 |
-
|
| 816 |
-
|
| 817 |
-
def present_final_results(state: AgentState) -> AgentState:
|
| 818 |
-
"""Node: Format and present final results to user"""
|
| 819 |
-
|
| 820 |
-
# Format books for display
|
| 821 |
-
books_text = "Here are your personalized book recommendations:\n\n"
|
| 822 |
-
for i, book in enumerate(state["final_books"], 1):
|
| 823 |
-
books_text += f"{i}. **{book['title']}** by {book['author']}\n"
|
| 824 |
-
|
| 825 |
-
state["messages"].append({
|
| 826 |
-
"role": "assistant",
|
| 827 |
-
"content": books_text + f"\n\nI'm also generating a soundtrack that matches your vibe! Scroll down for all the goodies ⬇️"
|
| 828 |
-
})
|
| 829 |
-
|
| 830 |
-
state["reasoning"].append("Presented final results to user")
|
| 831 |
-
|
| 832 |
-
return state
|
| 833 |
-
|
| 834 |
-
|
| 835 |
-
# ============================================================================
|
| 836 |
-
# GRAPH CONSTRUCTION
|
| 837 |
-
# ============================================================================
|
| 838 |
-
|
| 839 |
-
def create_agent_graph():
|
| 840 |
-
"""Create and compile the LangGraph workflow with interrupts for user input"""
|
| 841 |
-
from langgraph.checkpoint.memory import MemorySaver
|
| 842 |
-
|
| 843 |
-
# Initialize graph
|
| 844 |
-
workflow = StateGraph(AgentState)
|
| 845 |
-
|
| 846 |
-
# Add nodes
|
| 847 |
-
workflow.add_node("generate_initial_vibe", generate_initial_vibe)
|
| 848 |
-
workflow.add_node("refine_vibe", refine_vibe)
|
| 849 |
-
workflow.add_node("retrieve_books", retrieve_books)
|
| 850 |
-
workflow.add_node("fetch_metadata", fetch_book_metadata)
|
| 851 |
-
workflow.add_node("generate_q1", generate_question_1)
|
| 852 |
-
workflow.add_node("wait_a1", wait_for_answer_1)
|
| 853 |
-
workflow.add_node("generate_q2", generate_question_2)
|
| 854 |
-
workflow.add_node("wait_a2", wait_for_answer_2)
|
| 855 |
-
workflow.add_node("finalize_books", finalize_books)
|
| 856 |
-
workflow.add_node("generate_soundtrack", generate_soundtrack)
|
| 857 |
-
workflow.add_node("present_results", present_final_results)
|
| 858 |
-
|
| 859 |
-
# Set entry point
|
| 860 |
-
workflow.set_entry_point("generate_initial_vibe")
|
| 861 |
-
|
| 862 |
-
# After initial vibe, check if user is satisfied or wants refinement
|
| 863 |
-
workflow.add_conditional_edges(
|
| 864 |
-
"generate_initial_vibe",
|
| 865 |
-
check_vibe_satisfaction,
|
| 866 |
-
{
|
| 867 |
-
"refine": "refine_vibe",
|
| 868 |
-
"retrieve": "retrieve_books"
|
| 869 |
-
}
|
| 870 |
-
)
|
| 871 |
-
|
| 872 |
-
# After refinement, check again if user is satisfied
|
| 873 |
-
workflow.add_conditional_edges(
|
| 874 |
-
"refine_vibe",
|
| 875 |
-
check_vibe_satisfaction,
|
| 876 |
-
{
|
| 877 |
-
"refine": "refine_vibe",
|
| 878 |
-
"retrieve": "retrieve_books"
|
| 879 |
-
}
|
| 880 |
-
)
|
| 881 |
-
|
| 882 |
-
# Sequential: retrieve -> fetch -> generate Q1 -> wait A1 -> generate Q2 -> wait A2 -> finalize
|
| 883 |
-
workflow.add_edge("retrieve_books", "fetch_metadata")
|
| 884 |
-
workflow.add_edge("fetch_metadata", "generate_q1")
|
| 885 |
-
workflow.add_edge("generate_q1", "wait_a1")
|
| 886 |
-
workflow.add_edge("wait_a1", "generate_q2")
|
| 887 |
-
workflow.add_edge("generate_q2", "wait_a2")
|
| 888 |
-
workflow.add_edge("wait_a2", "finalize_books")
|
| 889 |
-
|
| 890 |
-
# Sequential: finalize -> soundtrack -> present
|
| 891 |
-
workflow.add_edge("finalize_books", "generate_soundtrack")
|
| 892 |
-
workflow.add_edge("generate_soundtrack", "present_results")
|
| 893 |
-
workflow.add_edge("present_results", END)
|
| 894 |
-
|
| 895 |
-
# Compile with checkpointer for state persistence
|
| 896 |
-
memory = MemorySaver()
|
| 897 |
-
return workflow.compile(checkpointer=memory)
|
| 898 |
-
|
| 899 |
-
|
| 900 |
-
# ============================================================================
|
| 901 |
-
# MAIN INTERFACE
|
| 902 |
-
# ============================================================================
|
| 903 |
-
|
| 904 |
-
# Global graph instance with persistent checkpointer
|
| 905 |
-
_GRAPH_INSTANCE = None
|
| 906 |
-
|
| 907 |
-
def get_graph():
|
| 908 |
-
"""Get or create the compiled graph with checkpointer"""
|
| 909 |
-
global _GRAPH_INSTANCE
|
| 910 |
-
if _GRAPH_INSTANCE is None:
|
| 911 |
-
print(f"[DEBUG AGENT] Creating NEW graph instance!")
|
| 912 |
-
_GRAPH_INSTANCE = create_agent_graph()
|
| 913 |
-
else:
|
| 914 |
-
print(f"[DEBUG AGENT] Reusing existing graph instance")
|
| 915 |
-
return _GRAPH_INSTANCE
|
| 916 |
-
|
| 917 |
-
def reset_agent():
|
| 918 |
-
"""Reset the agent by clearing the graph instance"""
|
| 919 |
-
global _GRAPH_INSTANCE
|
| 920 |
-
_GRAPH_INSTANCE = None
|
| 921 |
-
|
| 922 |
-
def run_agent(images: List[str], user_message: str = None, thread_id: str = "main"):
|
| 923 |
-
"""
|
| 924 |
-
Main interface to run the agent with interrupt-based human-in-the-loop
|
| 925 |
-
|
| 926 |
-
Args:
|
| 927 |
-
images: List of image URLs/base64 for initial upload
|
| 928 |
-
user_message: User's message (for resuming after interrupt)
|
| 929 |
-
thread_id: Unique identifier for the user session (required for multi-user support)
|
| 930 |
-
|
| 931 |
-
Returns:
|
| 932 |
-
Updated state with agent's response
|
| 933 |
-
"""
|
| 934 |
-
from langgraph.types import Command
|
| 935 |
-
|
| 936 |
-
graph = get_graph()
|
| 937 |
-
thread_config = {"configurable": {"thread_id": thread_id}}
|
| 938 |
-
|
| 939 |
-
# Initialize state if new conversation (images provided)
|
| 940 |
-
if images and len(images) > 0:
|
| 941 |
-
initial_state = AgentState(
|
| 942 |
-
images=images,
|
| 943 |
-
messages=[],
|
| 944 |
-
aesthetic_genre_keywords=[],
|
| 945 |
-
mood_atmosphere=[],
|
| 946 |
-
core_themes=[],
|
| 947 |
-
tropes=[],
|
| 948 |
-
feels_like="",
|
| 949 |
-
vibe_refinement_count=0,
|
| 950 |
-
retrieved_books=[],
|
| 951 |
-
books_with_metadata=[],
|
| 952 |
-
q1_question="",
|
| 953 |
-
q2_question="",
|
| 954 |
-
user_preferences={},
|
| 955 |
-
final_books=[],
|
| 956 |
-
soundtrack_url="",
|
| 957 |
-
reasoning=[]
|
| 958 |
-
)
|
| 959 |
-
# Start the graph - it will stop at first interrupt()
|
| 960 |
-
result = graph.invoke(initial_state, thread_config)
|
| 961 |
-
return result
|
| 962 |
-
|
| 963 |
-
# Resume with user's message
|
| 964 |
-
if user_message:
|
| 965 |
-
# Check current state before resuming
|
| 966 |
-
current_state = graph.get_state(thread_config)
|
| 967 |
-
print(f"[DEBUG AGENT] State BEFORE resume:")
|
| 968 |
-
print(f"[DEBUG AGENT] messages count: {len(current_state.values.get('messages', []))}")
|
| 969 |
-
for i, m in enumerate(current_state.values.get('messages', [])):
|
| 970 |
-
print(f"[DEBUG AGENT] msg[{i}]: {m.get('role')} - {m.get('content', '')[:60]}...")
|
| 971 |
-
print(f"[DEBUG AGENT] q1_question: '{current_state.values.get('q1_question', '')[:50] if current_state.values.get('q1_question') else 'EMPTY'}'")
|
| 972 |
-
|
| 973 |
-
# Resume from the last interrupt; the value passed to Command(resume=...)
|
| 974 |
-
# is what the corresponding interrupt(...) call will return inside the node.
|
| 975 |
-
print(f"[DEBUG AGENT] Resuming graph with user_message: {user_message[:50]}...")
|
| 976 |
-
result = graph.invoke(Command(resume=user_message), thread_config)
|
| 977 |
-
print(f"[DEBUG AGENT] graph.invoke returned: {type(result)}, keys: {list(result.keys()) if hasattr(result, 'keys') else 'N/A'}")
|
| 978 |
-
print(f"[DEBUG AGENT] result has {len(result.get('messages', []))} messages")
|
| 979 |
-
|
| 980 |
-
# Remove __interrupt__ key if present before returning
|
| 981 |
-
if "__interrupt__" in result:
|
| 982 |
-
result = {k: v for k, v in result.items() if k != "__interrupt__"}
|
| 983 |
-
return result
|
| 984 |
-
|
| 985 |
-
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/custom.css
DELETED
|
@@ -1,59 +0,0 @@
|
|
| 1 |
-
@import url('https://fonts.googleapis.com/css2?family=Pixelify+Sans:wght@400;500;600;700&display=swap');
|
| 2 |
-
|
| 3 |
-
body {
|
| 4 |
-
background-image: url('https://64.media.tumblr.com/677c7a2824b4c515b4c96b0cccb44740/tumblr_ney3botpbL1snc5kxo2_250.png');
|
| 5 |
-
background-repeat: repeat;
|
| 6 |
-
background-size: auto;
|
| 7 |
-
}
|
| 8 |
-
|
| 9 |
-
.gradio-container {
|
| 10 |
-
background-image: url('https://64.media.tumblr.com/677c7a2824b4c515b4c96b0cccb44740/tumblr_ney3botpbL1snc5kxo2_250.png');
|
| 11 |
-
background-repeat: repeat;
|
| 12 |
-
background-size: auto;
|
| 13 |
-
}
|
| 14 |
-
|
| 15 |
-
#main-title {
|
| 16 |
-
text-align: center;
|
| 17 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 18 |
-
-webkit-background-clip: text;
|
| 19 |
-
-webkit-text-fill-color: transparent;
|
| 20 |
-
background-clip: text;
|
| 21 |
-
font-weight: bold;
|
| 22 |
-
margin-bottom: 8px;
|
| 23 |
-
font-family: 'Pixelify Sans', sans-serif;
|
| 24 |
-
}
|
| 25 |
-
|
| 26 |
-
#subtitle {
|
| 27 |
-
text-align: center;
|
| 28 |
-
color: #1b0925;
|
| 29 |
-
margin-bottom: 30px;
|
| 30 |
-
}
|
| 31 |
-
|
| 32 |
-
.vibe-container {
|
| 33 |
-
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
|
| 34 |
-
border-radius: 15px;
|
| 35 |
-
padding: 20px;
|
| 36 |
-
}
|
| 37 |
-
|
| 38 |
-
.recommendation-section {
|
| 39 |
-
margin-top: 30px;
|
| 40 |
-
}
|
| 41 |
-
|
| 42 |
-
#status-display textarea {
|
| 43 |
-
font-size: 1.4em !important;
|
| 44 |
-
font-weight: 500;
|
| 45 |
-
background: transparent !important;
|
| 46 |
-
}
|
| 47 |
-
|
| 48 |
-
/* Chatbot message text */
|
| 49 |
-
.chatbot .message-wrap {
|
| 50 |
-
font-size: 1.3em !important;
|
| 51 |
-
}
|
| 52 |
-
|
| 53 |
-
footer {
|
| 54 |
-
text-align: center;
|
| 55 |
-
margin-top: 50px;
|
| 56 |
-
padding: 20px;
|
| 57 |
-
color: #999;
|
| 58 |
-
font-size: 0.9em;
|
| 59 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/prompts.py
DELETED
|
@@ -1,156 +0,0 @@
|
|
| 1 |
-
"""
|
| 2 |
-
Centralized Prompts Configuration
|
| 3 |
-
Store all system prompts and templates used across the vibe-reader application
|
| 4 |
-
"""
|
| 5 |
-
|
| 6 |
-
# ============================================================================
|
| 7 |
-
# VIBE EXTRACTION PROMPTS
|
| 8 |
-
# ============================================================================
|
| 9 |
-
|
| 10 |
-
VIBE_EXTRACTION = """You are an expert at capturing the emotional essence and atmosphere of visual content. Your task is to analyze one or more images and translate their collective 'vibe' into a detailed description that would help someone find fiction books with a similar feeling and atmosphere.
|
| 11 |
-
|
| 12 |
-
**Context:** This analysis will be used to recommend books based on visual mood boards, similar to how users on r/Booksthatfeellikethis share images to convey the type of story atmosphere they're seeking.
|
| 13 |
-
|
| 14 |
-
**Key Instructions:**
|
| 15 |
-
- Focus on the emotional atmosphere and feelings the images evoke, NOT literal descriptions of what's shown
|
| 16 |
-
- Think like a reader who wants to be immersed in a world that feels like these images
|
| 17 |
-
- When analyzing multiple images, treat them as a cohesive mood board that defines one unified vibe
|
| 18 |
-
- Consider what it would feel like to live in or experience a story set in this atmosphere
|
| 19 |
-
- Use natural, conversational language - be evocative but avoid overly poetic or academic terminology
|
| 20 |
-
- If images seem to have conflicting vibes, find the common emotional thread that unifies them
|
| 21 |
-
- Only reference specific time periods or cultures if the images clearly and obviously point to them
|
| 22 |
-
- Avoid describing graphic violence even if present in the images
|
| 23 |
-
|
| 24 |
-
**Target Output:** Your description should help match these vibes to fiction books across all genres.
|
| 25 |
-
|
| 26 |
-
**Required Format:**
|
| 27 |
-
|
| 28 |
-
You must output a valid JSON object with the following structure:
|
| 29 |
-
|
| 30 |
-
{
|
| 31 |
-
"aesthetic_genre_keywords": ["keyword1", "keyword2", "keyword3"],
|
| 32 |
-
"mood_atmosphere": ["mood1", "mood2", "mood3"],
|
| 33 |
-
"core_themes": ["theme1", "theme2", "theme3"],
|
| 34 |
-
"tropes": ["trope1", "trope2", "trope3"],
|
| 35 |
-
"feels_like": "4-5 sentences that synthesize the overall emotional essence..."
|
| 36 |
-
}
|
| 37 |
-
|
| 38 |
-
Guidelines for each field:
|
| 39 |
-
- **aesthetic_genre_keywords**: Style and genre descriptors like Gothic, Dark Academia, Cyberpunk, Cottagecore, Film Noir, Solarpunk, etc.
|
| 40 |
-
- **mood_atmosphere**: Emotional tone - words like Melancholic, Nostalgic, Tense, Cozy, Dreamlike, Whimsical, Foreboding, etc.
|
| 41 |
-
- **core_themes**: Broad underlying themes such as Isolation, Mystery, Self-discovery, Loss, Wonder, Coming-of-age, Redemption, Power and corruption, etc.
|
| 42 |
-
- **tropes**: Specific narrative tropes and patterns like Enemies-to-lovers, Found family, Chosen one, Unreliable narrator, Slow burn romance, Morally gray protagonist, etc.
|
| 43 |
-
- **feels_like**: Write 4-5 sentences that synthesize the overall emotional essence. Focus 60% on potential story atmosphere and subtle plot elements, 40% on pure mood. Describe what it would feel like to be immersed in a book with this atmosphere.
|
| 44 |
-
|
| 45 |
-
IMPORTANT: Return ONLY the JSON object. Do not include markdown code blocks, backticks, or any text outside the JSON.
|
| 46 |
-
"""
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
# ============================================================================
|
| 50 |
-
# VIBE REFINEMENT PROMPTS
|
| 51 |
-
# ============================================================================
|
| 52 |
-
|
| 53 |
-
VIBE_REFINEMENT = """You are helping refine a vibe description based on user feedback.
|
| 54 |
-
|
| 55 |
-
IMPORTANT:
|
| 56 |
-
- If the user approves/accepts the vibe (says "yes", "perfect", "good", "love it", etc.), return the EXACT same description unchanged.
|
| 57 |
-
- Only modify the description if the user explicitly asks for changes or suggests specific adjustments.
|
| 58 |
-
|
| 59 |
-
When changes are requested, adjust the description to incorporate their suggestions while maintaining a natural, evocative tone."""
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
# ============================================================================
|
| 63 |
-
# BOOK SELECTION & NARROWING PROMPTS
|
| 64 |
-
# ============================================================================
|
| 65 |
-
|
| 66 |
-
NARROWING_QUESTION_GENERATOR = """You are helping narrow down book recommendations by finding the KEY DIFFERENCE between the candidate books.
|
| 67 |
-
|
| 68 |
-
YOUR PROCESS:
|
| 69 |
-
1. READ the book descriptions and categories carefully
|
| 70 |
-
2. IDENTIFY a concrete differentiating factor that actually appears in the books (not abstract vibes)
|
| 71 |
-
3. FORMULATE a question where Option A matches some books and Option B matches others
|
| 72 |
-
|
| 73 |
-
GROUNDING RULES:
|
| 74 |
-
- Your question MUST be based on ACTUAL content from the book descriptions/categories provided
|
| 75 |
-
- Look for concrete differences: time period, setting type, protagonist type, plot focus, tone, narrative style
|
| 76 |
-
- Do NOT invent abstract aesthetic questions that aren't grounded in the books
|
| 77 |
-
- NEVER mention specific book titles or authors
|
| 78 |
-
|
| 79 |
-
FORMAT RULES:
|
| 80 |
-
- Use EXACTLY this format: "Do you prefer **A)** [option] or **B)** [option]?"
|
| 81 |
-
- Keep options SHORT (under 10 words each)
|
| 82 |
-
- The user should be able to answer with just "A" or "B"
|
| 83 |
-
|
| 84 |
-
If previous preferences exist, your question must be COMPATIBLE with what the user already chose.
|
| 85 |
-
|
| 86 |
-
Provide ONLY the question, no explanation."""
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
BOOK_FINALIZER = """You are selecting the {num_books} best books from a list based on vibe and user preferences.
|
| 90 |
-
|
| 91 |
-
You will receive:
|
| 92 |
-
1. The vibe profile (aesthetics, mood, themes, tropes, feels_like)
|
| 93 |
-
2. A list of candidate books with descriptions and categories
|
| 94 |
-
3. User preferences from Q&A (question + answer pairs)
|
| 95 |
-
|
| 96 |
-
Your task:
|
| 97 |
-
- Analyze each book's description and categories against the vibe
|
| 98 |
-
- Apply the user's stated preferences as HARD FILTERS — if they said they prefer X over Y, prioritize books matching X
|
| 99 |
-
- Select the {num_books} books that best match BOTH the vibe AND the user's preferences
|
| 100 |
-
|
| 101 |
-
Respond with ONLY a JSON array of book indices (1-indexed), like: [3, 7, 12]"""
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
# ============================================================================
|
| 105 |
-
# MUSIC GENERATION PROMPTS
|
| 106 |
-
# ============================================================================
|
| 107 |
-
|
| 108 |
-
MUSIC_PROMPT_GENERATION = """You are creating a music generation prompt for ElevenLabs based on a book vibe analysis.
|
| 109 |
-
Your task is to translate the literary atmosphere and emotional elements into a descriptive music prompt that will generate an appropriate instrumental soundtrack.
|
| 110 |
-
|
| 111 |
-
Key Instructions:
|
| 112 |
-
- Create instrumental ambient music that captures the emotional essence of the vibe
|
| 113 |
-
- Focus on atmosphere, mood, and emotional tone - NOT specific story elements
|
| 114 |
-
- Use descriptive musical terms (tempo, instrumentation, style, mood)
|
| 115 |
-
- Consider how the music would feel as background for reading or immersing in this type of story
|
| 116 |
-
- Aim for 30-60 second ambient pieces that set a mood
|
| 117 |
-
- Avoid mentioning specific characters, plots, or narrative events
|
| 118 |
-
- DO NOT reference specific artists or copyrighted works
|
| 119 |
-
- Keep prompts concise but evocative (50-150 words)
|
| 120 |
-
|
| 121 |
-
Musical Elements to Consider:
|
| 122 |
-
- Tempo: slow, moderate, energetic
|
| 123 |
-
- Instrumentation: piano, strings, electronic, ambient textures, orchestral
|
| 124 |
-
- Style: ambient, classical, electronic, folk, cinematic
|
| 125 |
-
- Mood: mysterious, peaceful, tense, whimsical, melancholic, etc.
|
| 126 |
-
|
| 127 |
-
Output: A single descriptive prompt for ElevenLabs music generation."""
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
# ============================================================================
|
| 131 |
-
# USER SATISFACTION PROMPTS
|
| 132 |
-
# ============================================================================
|
| 133 |
-
|
| 134 |
-
VIBE_SATISFACTION_CHECKER = """Does the user want to change the vibe description? Reply with ONLY 'satisfied' or 'not_satisfied'.
|
| 135 |
-
|
| 136 |
-
'satisfied' responses include: yes, yeah, perfect, good, love it, great, ok, okay, sure, sounds good, that works, etc.
|
| 137 |
-
'not_satisfied' responses include: no, change it, more X, less Y, add Z, I want, make it, etc.
|
| 138 |
-
|
| 139 |
-
Default to 'satisfied' unless the user EXPLICITLY requests changes."""
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
# ============================================================================
|
| 143 |
-
# HELPER FUNCTIONS
|
| 144 |
-
# ============================================================================
|
| 145 |
-
|
| 146 |
-
def get_book_finalizer_prompt(num_books: int = 3) -> str:
|
| 147 |
-
"""
|
| 148 |
-
Get the book finalizer prompt with the specified number of books
|
| 149 |
-
|
| 150 |
-
Args:
|
| 151 |
-
num_books: Number of books to select (default: 3)
|
| 152 |
-
|
| 153 |
-
Returns:
|
| 154 |
-
The formatted system prompt string
|
| 155 |
-
"""
|
| 156 |
-
return BOOK_FINALIZER.format(num_books=num_books)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/requirements.txt
DELETED
|
@@ -1,549 +0,0 @@
|
|
| 1 |
-
# This file was autogenerated by uv via the following command:
|
| 2 |
-
# uv export --no-hashes --no-dev -o app/requirements.txt
|
| 3 |
-
-e .
|
| 4 |
-
aiofiles==24.1.0
|
| 5 |
-
# via gradio
|
| 6 |
-
aiohappyeyeballs==2.6.1
|
| 7 |
-
# via aiohttp
|
| 8 |
-
aiohttp==3.13.2
|
| 9 |
-
# via modal
|
| 10 |
-
aiosignal==1.4.0
|
| 11 |
-
# via aiohttp
|
| 12 |
-
altair==6.0.0
|
| 13 |
-
# via vibe-reader
|
| 14 |
-
annotated-doc==0.0.4
|
| 15 |
-
# via fastapi
|
| 16 |
-
annotated-types==0.7.0
|
| 17 |
-
# via pydantic
|
| 18 |
-
anthropic==0.72.1
|
| 19 |
-
# via vibe-reader
|
| 20 |
-
anyio==4.11.0
|
| 21 |
-
# via
|
| 22 |
-
# anthropic
|
| 23 |
-
# gradio
|
| 24 |
-
# httpx
|
| 25 |
-
# mcp
|
| 26 |
-
# openai
|
| 27 |
-
# sse-starlette
|
| 28 |
-
# starlette
|
| 29 |
-
# watchfiles
|
| 30 |
-
attrs==25.4.0
|
| 31 |
-
# via
|
| 32 |
-
# aiohttp
|
| 33 |
-
# jsonschema
|
| 34 |
-
# referencing
|
| 35 |
-
audioop-lts==0.2.2
|
| 36 |
-
# via gradio
|
| 37 |
-
authlib==1.6.5
|
| 38 |
-
# via gradio
|
| 39 |
-
blinker==1.9.0
|
| 40 |
-
# via flask
|
| 41 |
-
brotli==1.2.0
|
| 42 |
-
# via gradio
|
| 43 |
-
cbor2==5.7.1
|
| 44 |
-
# via modal
|
| 45 |
-
certifi==2025.10.5
|
| 46 |
-
# via
|
| 47 |
-
# httpcore
|
| 48 |
-
# httpx
|
| 49 |
-
# modal
|
| 50 |
-
# requests
|
| 51 |
-
cffi==2.0.0 ; implementation_name == 'pypy' or platform_python_implementation != 'PyPy'
|
| 52 |
-
# via
|
| 53 |
-
# cryptography
|
| 54 |
-
# pyzmq
|
| 55 |
-
charset-normalizer==3.4.4
|
| 56 |
-
# via requests
|
| 57 |
-
click==8.3.0
|
| 58 |
-
# via
|
| 59 |
-
# flask
|
| 60 |
-
# marimo
|
| 61 |
-
# modal
|
| 62 |
-
# typer
|
| 63 |
-
# uvicorn
|
| 64 |
-
colorama==0.4.6 ; sys_platform == 'win32'
|
| 65 |
-
# via
|
| 66 |
-
# click
|
| 67 |
-
# tqdm
|
| 68 |
-
cryptography==46.0.3
|
| 69 |
-
# via
|
| 70 |
-
# authlib
|
| 71 |
-
# pyjwt
|
| 72 |
-
distro==1.9.0
|
| 73 |
-
# via
|
| 74 |
-
# anthropic
|
| 75 |
-
# openai
|
| 76 |
-
docstring-parser==0.17.0
|
| 77 |
-
# via anthropic
|
| 78 |
-
docutils==0.22.3
|
| 79 |
-
# via marimo
|
| 80 |
-
elevenlabs==2.24.0
|
| 81 |
-
# via vibe-reader
|
| 82 |
-
faiss-cpu==1.13.0
|
| 83 |
-
# via vibe-reader
|
| 84 |
-
fastapi==0.121.2
|
| 85 |
-
# via gradio
|
| 86 |
-
ffmpy==1.0.0
|
| 87 |
-
# via gradio
|
| 88 |
-
filelock==3.20.0
|
| 89 |
-
# via
|
| 90 |
-
# huggingface-hub
|
| 91 |
-
# torch
|
| 92 |
-
# transformers
|
| 93 |
-
flask==3.1.2
|
| 94 |
-
# via vibe-reader
|
| 95 |
-
frozenlist==1.8.0
|
| 96 |
-
# via
|
| 97 |
-
# aiohttp
|
| 98 |
-
# aiosignal
|
| 99 |
-
fsspec==2025.10.0
|
| 100 |
-
# via
|
| 101 |
-
# gradio-client
|
| 102 |
-
# huggingface-hub
|
| 103 |
-
# torch
|
| 104 |
-
gradio==6.0.1
|
| 105 |
-
# via vibe-reader
|
| 106 |
-
gradio-client==2.0.0
|
| 107 |
-
# via gradio
|
| 108 |
-
groovy==0.1.2
|
| 109 |
-
# via gradio
|
| 110 |
-
grpclib==0.4.8
|
| 111 |
-
# via modal
|
| 112 |
-
h11==0.16.0
|
| 113 |
-
# via
|
| 114 |
-
# httpcore
|
| 115 |
-
# uvicorn
|
| 116 |
-
h2==4.3.0
|
| 117 |
-
# via grpclib
|
| 118 |
-
hf-xet==1.2.0 ; platform_machine == 'aarch64' or platform_machine == 'amd64' or platform_machine == 'arm64' or platform_machine == 'x86_64'
|
| 119 |
-
# via huggingface-hub
|
| 120 |
-
hpack==4.1.0
|
| 121 |
-
# via h2
|
| 122 |
-
httpcore==1.0.9
|
| 123 |
-
# via httpx
|
| 124 |
-
httpx==0.28.1
|
| 125 |
-
# via
|
| 126 |
-
# anthropic
|
| 127 |
-
# elevenlabs
|
| 128 |
-
# gradio
|
| 129 |
-
# gradio-client
|
| 130 |
-
# langgraph-sdk
|
| 131 |
-
# langsmith
|
| 132 |
-
# mcp
|
| 133 |
-
# openai
|
| 134 |
-
# safehttpx
|
| 135 |
-
httpx-sse==0.4.3
|
| 136 |
-
# via mcp
|
| 137 |
-
huggingface-hub==0.36.0
|
| 138 |
-
# via
|
| 139 |
-
# gradio
|
| 140 |
-
# gradio-client
|
| 141 |
-
# tokenizers
|
| 142 |
-
# transformers
|
| 143 |
-
hyperframe==6.1.0
|
| 144 |
-
# via h2
|
| 145 |
-
idna==3.11
|
| 146 |
-
# via
|
| 147 |
-
# anyio
|
| 148 |
-
# httpx
|
| 149 |
-
# requests
|
| 150 |
-
# yarl
|
| 151 |
-
itsdangerous==2.2.0
|
| 152 |
-
# via
|
| 153 |
-
# flask
|
| 154 |
-
# gradio
|
| 155 |
-
# marimo
|
| 156 |
-
jedi==0.19.2
|
| 157 |
-
# via marimo
|
| 158 |
-
jinja2==3.1.6
|
| 159 |
-
# via
|
| 160 |
-
# altair
|
| 161 |
-
# flask
|
| 162 |
-
# gradio
|
| 163 |
-
# torch
|
| 164 |
-
jiter==0.12.0
|
| 165 |
-
# via
|
| 166 |
-
# anthropic
|
| 167 |
-
# openai
|
| 168 |
-
joblib==1.5.2
|
| 169 |
-
# via scikit-learn
|
| 170 |
-
jsonpatch==1.33
|
| 171 |
-
# via langchain-core
|
| 172 |
-
jsonpointer==3.0.0
|
| 173 |
-
# via jsonpatch
|
| 174 |
-
jsonschema==4.25.1
|
| 175 |
-
# via
|
| 176 |
-
# altair
|
| 177 |
-
# mcp
|
| 178 |
-
jsonschema-specifications==2025.9.1
|
| 179 |
-
# via jsonschema
|
| 180 |
-
langchain-core==1.1.0
|
| 181 |
-
# via
|
| 182 |
-
# langchain-nebius
|
| 183 |
-
# langchain-openai
|
| 184 |
-
# langgraph
|
| 185 |
-
# langgraph-checkpoint
|
| 186 |
-
# langgraph-prebuilt
|
| 187 |
-
# vibe-reader
|
| 188 |
-
langchain-nebius==0.1.3
|
| 189 |
-
# via vibe-reader
|
| 190 |
-
langchain-openai==1.1.0
|
| 191 |
-
# via
|
| 192 |
-
# langchain-nebius
|
| 193 |
-
# vibe-reader
|
| 194 |
-
langgraph==1.0.4
|
| 195 |
-
# via vibe-reader
|
| 196 |
-
langgraph-checkpoint==3.0.1
|
| 197 |
-
# via
|
| 198 |
-
# langgraph
|
| 199 |
-
# langgraph-prebuilt
|
| 200 |
-
langgraph-prebuilt==1.0.5
|
| 201 |
-
# via langgraph
|
| 202 |
-
langgraph-sdk==0.2.10
|
| 203 |
-
# via langgraph
|
| 204 |
-
langsmith==0.4.48
|
| 205 |
-
# via langchain-core
|
| 206 |
-
loro==1.8.2 ; python_full_version < '3.14'
|
| 207 |
-
# via marimo
|
| 208 |
-
marimo==0.17.7
|
| 209 |
-
# via vibe-reader
|
| 210 |
-
markdown==3.10
|
| 211 |
-
# via
|
| 212 |
-
# marimo
|
| 213 |
-
# pymdown-extensions
|
| 214 |
-
markdown-it-py==4.0.0
|
| 215 |
-
# via rich
|
| 216 |
-
markupsafe==3.0.3
|
| 217 |
-
# via
|
| 218 |
-
# flask
|
| 219 |
-
# gradio
|
| 220 |
-
# jinja2
|
| 221 |
-
# werkzeug
|
| 222 |
-
mcp==1.21.1
|
| 223 |
-
# via gradio
|
| 224 |
-
mdurl==0.1.2
|
| 225 |
-
# via markdown-it-py
|
| 226 |
-
modal==1.2.4
|
| 227 |
-
# via vibe-reader
|
| 228 |
-
mpmath==1.3.0
|
| 229 |
-
# via sympy
|
| 230 |
-
msgspec-m==0.19.2
|
| 231 |
-
# via marimo
|
| 232 |
-
multidict==6.7.0
|
| 233 |
-
# via
|
| 234 |
-
# aiohttp
|
| 235 |
-
# grpclib
|
| 236 |
-
# yarl
|
| 237 |
-
narwhals==2.11.0
|
| 238 |
-
# via
|
| 239 |
-
# altair
|
| 240 |
-
# marimo
|
| 241 |
-
# plotly
|
| 242 |
-
networkx==3.6
|
| 243 |
-
# via torch
|
| 244 |
-
numpy==2.3.4
|
| 245 |
-
# via
|
| 246 |
-
# faiss-cpu
|
| 247 |
-
# gradio
|
| 248 |
-
# pandas
|
| 249 |
-
# scikit-learn
|
| 250 |
-
# scipy
|
| 251 |
-
# torchvision
|
| 252 |
-
# transformers
|
| 253 |
-
nvidia-cublas-cu12==12.6.4.1 ; sys_platform == 'linux'
|
| 254 |
-
# via
|
| 255 |
-
# nvidia-cudnn-cu12
|
| 256 |
-
# nvidia-cusolver-cu12
|
| 257 |
-
# torch
|
| 258 |
-
nvidia-cuda-cupti-cu12==12.6.80 ; sys_platform == 'linux'
|
| 259 |
-
# via torch
|
| 260 |
-
nvidia-cuda-nvrtc-cu12==12.6.77 ; sys_platform == 'linux'
|
| 261 |
-
# via torch
|
| 262 |
-
nvidia-cuda-runtime-cu12==12.6.77 ; sys_platform == 'linux'
|
| 263 |
-
# via torch
|
| 264 |
-
nvidia-cudnn-cu12==9.10.2.21 ; sys_platform == 'linux'
|
| 265 |
-
# via torch
|
| 266 |
-
nvidia-cufft-cu12==11.3.0.4 ; sys_platform == 'linux'
|
| 267 |
-
# via torch
|
| 268 |
-
nvidia-cufile-cu12==1.11.1.6 ; sys_platform == 'linux'
|
| 269 |
-
# via torch
|
| 270 |
-
nvidia-curand-cu12==10.3.7.77 ; sys_platform == 'linux'
|
| 271 |
-
# via torch
|
| 272 |
-
nvidia-cusolver-cu12==11.7.1.2 ; sys_platform == 'linux'
|
| 273 |
-
# via torch
|
| 274 |
-
nvidia-cusparse-cu12==12.5.4.2 ; sys_platform == 'linux'
|
| 275 |
-
# via
|
| 276 |
-
# nvidia-cusolver-cu12
|
| 277 |
-
# torch
|
| 278 |
-
nvidia-cusparselt-cu12==0.7.1 ; sys_platform == 'linux'
|
| 279 |
-
# via torch
|
| 280 |
-
nvidia-nccl-cu12==2.27.5 ; sys_platform == 'linux'
|
| 281 |
-
# via torch
|
| 282 |
-
nvidia-nvjitlink-cu12==12.6.85 ; sys_platform == 'linux'
|
| 283 |
-
# via
|
| 284 |
-
# nvidia-cufft-cu12
|
| 285 |
-
# nvidia-cusolver-cu12
|
| 286 |
-
# nvidia-cusparse-cu12
|
| 287 |
-
# torch
|
| 288 |
-
nvidia-nvshmem-cu12==3.3.20 ; sys_platform == 'linux'
|
| 289 |
-
# via torch
|
| 290 |
-
nvidia-nvtx-cu12==12.6.77 ; sys_platform == 'linux'
|
| 291 |
-
# via torch
|
| 292 |
-
openai==2.8.0
|
| 293 |
-
# via
|
| 294 |
-
# langchain-nebius
|
| 295 |
-
# langchain-openai
|
| 296 |
-
# vibe-reader
|
| 297 |
-
orjson==3.11.4
|
| 298 |
-
# via
|
| 299 |
-
# gradio
|
| 300 |
-
# langgraph-sdk
|
| 301 |
-
# langsmith
|
| 302 |
-
ormsgpack==1.12.0
|
| 303 |
-
# via langgraph-checkpoint
|
| 304 |
-
packaging==25.0
|
| 305 |
-
# via
|
| 306 |
-
# altair
|
| 307 |
-
# faiss-cpu
|
| 308 |
-
# gradio
|
| 309 |
-
# gradio-client
|
| 310 |
-
# huggingface-hub
|
| 311 |
-
# langchain-core
|
| 312 |
-
# langsmith
|
| 313 |
-
# marimo
|
| 314 |
-
# plotly
|
| 315 |
-
# transformers
|
| 316 |
-
pandas==2.3.3
|
| 317 |
-
# via
|
| 318 |
-
# gradio
|
| 319 |
-
# vibe-reader
|
| 320 |
-
parso==0.8.5
|
| 321 |
-
# via jedi
|
| 322 |
-
pillow==11.3.0
|
| 323 |
-
# via
|
| 324 |
-
# gradio
|
| 325 |
-
# torchvision
|
| 326 |
-
plotly==6.4.0
|
| 327 |
-
# via vibe-reader
|
| 328 |
-
praw==7.8.1
|
| 329 |
-
# via vibe-reader
|
| 330 |
-
prawcore==2.4.0
|
| 331 |
-
# via praw
|
| 332 |
-
propcache==0.4.1
|
| 333 |
-
# via
|
| 334 |
-
# aiohttp
|
| 335 |
-
# yarl
|
| 336 |
-
protobuf==6.33.1
|
| 337 |
-
# via modal
|
| 338 |
-
psutil==7.1.3
|
| 339 |
-
# via marimo
|
| 340 |
-
pycparser==2.23 ; (implementation_name != 'PyPy' and platform_python_implementation != 'PyPy') or (implementation_name == 'pypy' and platform_python_implementation == 'PyPy')
|
| 341 |
-
# via cffi
|
| 342 |
-
pydantic==2.12.4
|
| 343 |
-
# via
|
| 344 |
-
# anthropic
|
| 345 |
-
# elevenlabs
|
| 346 |
-
# fastapi
|
| 347 |
-
# gradio
|
| 348 |
-
# langchain-core
|
| 349 |
-
# langgraph
|
| 350 |
-
# langsmith
|
| 351 |
-
# mcp
|
| 352 |
-
# openai
|
| 353 |
-
# pydantic-settings
|
| 354 |
-
pydantic-core==2.41.5
|
| 355 |
-
# via
|
| 356 |
-
# elevenlabs
|
| 357 |
-
# pydantic
|
| 358 |
-
pydantic-settings==2.12.0
|
| 359 |
-
# via mcp
|
| 360 |
-
pydub==0.25.1
|
| 361 |
-
# via gradio
|
| 362 |
-
pygments==2.19.2
|
| 363 |
-
# via
|
| 364 |
-
# marimo
|
| 365 |
-
# rich
|
| 366 |
-
pyjwt==2.10.1
|
| 367 |
-
# via mcp
|
| 368 |
-
pymdown-extensions==10.16.1
|
| 369 |
-
# via marimo
|
| 370 |
-
python-dateutil==2.9.0.post0
|
| 371 |
-
# via pandas
|
| 372 |
-
python-dotenv==1.2.1
|
| 373 |
-
# via
|
| 374 |
-
# pydantic-settings
|
| 375 |
-
# vibe-reader
|
| 376 |
-
python-multipart==0.0.20
|
| 377 |
-
# via
|
| 378 |
-
# gradio
|
| 379 |
-
# mcp
|
| 380 |
-
pytz==2025.2
|
| 381 |
-
# via pandas
|
| 382 |
-
pywin32==311 ; sys_platform == 'win32'
|
| 383 |
-
# via mcp
|
| 384 |
-
pyyaml==6.0.3
|
| 385 |
-
# via
|
| 386 |
-
# gradio
|
| 387 |
-
# huggingface-hub
|
| 388 |
-
# langchain-core
|
| 389 |
-
# marimo
|
| 390 |
-
# pymdown-extensions
|
| 391 |
-
# transformers
|
| 392 |
-
pyzmq==27.1.0
|
| 393 |
-
# via vibe-reader
|
| 394 |
-
referencing==0.37.0
|
| 395 |
-
# via
|
| 396 |
-
# jsonschema
|
| 397 |
-
# jsonschema-specifications
|
| 398 |
-
regex==2025.11.3
|
| 399 |
-
# via
|
| 400 |
-
# tiktoken
|
| 401 |
-
# transformers
|
| 402 |
-
requests==2.32.5
|
| 403 |
-
# via
|
| 404 |
-
# elevenlabs
|
| 405 |
-
# huggingface-hub
|
| 406 |
-
# langsmith
|
| 407 |
-
# prawcore
|
| 408 |
-
# requests-toolbelt
|
| 409 |
-
# tiktoken
|
| 410 |
-
# transformers
|
| 411 |
-
# update-checker
|
| 412 |
-
# vibe-reader
|
| 413 |
-
requests-toolbelt==1.0.0
|
| 414 |
-
# via langsmith
|
| 415 |
-
rich==14.2.0
|
| 416 |
-
# via
|
| 417 |
-
# modal
|
| 418 |
-
# typer
|
| 419 |
-
rpds-py==0.28.0
|
| 420 |
-
# via
|
| 421 |
-
# jsonschema
|
| 422 |
-
# referencing
|
| 423 |
-
ruff==0.14.6
|
| 424 |
-
# via vibe-reader
|
| 425 |
-
safehttpx==0.1.7
|
| 426 |
-
# via gradio
|
| 427 |
-
safetensors==0.7.0
|
| 428 |
-
# via transformers
|
| 429 |
-
scikit-learn==1.7.2
|
| 430 |
-
# via vibe-reader
|
| 431 |
-
scipy==1.16.3
|
| 432 |
-
# via scikit-learn
|
| 433 |
-
semantic-version==2.10.0
|
| 434 |
-
# via gradio
|
| 435 |
-
setuptools==80.9.0
|
| 436 |
-
# via torch
|
| 437 |
-
shellingham==1.5.4
|
| 438 |
-
# via typer
|
| 439 |
-
six==1.17.0
|
| 440 |
-
# via python-dateutil
|
| 441 |
-
sniffio==1.3.1
|
| 442 |
-
# via
|
| 443 |
-
# anthropic
|
| 444 |
-
# anyio
|
| 445 |
-
# openai
|
| 446 |
-
sse-starlette==3.0.3
|
| 447 |
-
# via mcp
|
| 448 |
-
starlette==0.49.3
|
| 449 |
-
# via
|
| 450 |
-
# fastapi
|
| 451 |
-
# gradio
|
| 452 |
-
# marimo
|
| 453 |
-
# mcp
|
| 454 |
-
sympy==1.14.0
|
| 455 |
-
# via torch
|
| 456 |
-
synchronicity==0.10.5
|
| 457 |
-
# via modal
|
| 458 |
-
tenacity==9.1.2
|
| 459 |
-
# via langchain-core
|
| 460 |
-
threadpoolctl==3.6.0
|
| 461 |
-
# via scikit-learn
|
| 462 |
-
tiktoken==0.12.0
|
| 463 |
-
# via langchain-openai
|
| 464 |
-
tokenizers==0.22.1
|
| 465 |
-
# via transformers
|
| 466 |
-
toml==0.10.2
|
| 467 |
-
# via modal
|
| 468 |
-
tomlkit==0.13.3
|
| 469 |
-
# via
|
| 470 |
-
# gradio
|
| 471 |
-
# marimo
|
| 472 |
-
torch==2.9.1+cu126
|
| 473 |
-
# via
|
| 474 |
-
# torchvision
|
| 475 |
-
# vibe-reader
|
| 476 |
-
torchvision==0.24.1 ; python_full_version < '3.15' and platform_machine == 'aarch64' and platform_python_implementation == 'CPython' and sys_platform == 'linux'
|
| 477 |
-
# via vibe-reader
|
| 478 |
-
torchvision==0.24.1+cu126 ; python_full_version >= '3.15' or platform_machine != 'aarch64' or platform_python_implementation != 'CPython' or sys_platform != 'linux'
|
| 479 |
-
# via vibe-reader
|
| 480 |
-
tqdm==4.67.1
|
| 481 |
-
# via
|
| 482 |
-
# huggingface-hub
|
| 483 |
-
# openai
|
| 484 |
-
# transformers
|
| 485 |
-
# vibe-reader
|
| 486 |
-
transformers==4.57.1
|
| 487 |
-
# via vibe-reader
|
| 488 |
-
triton==3.5.1 ; sys_platform == 'linux'
|
| 489 |
-
# via torch
|
| 490 |
-
typer==0.20.0
|
| 491 |
-
# via
|
| 492 |
-
# gradio
|
| 493 |
-
# modal
|
| 494 |
-
# vibe-reader
|
| 495 |
-
types-certifi==2021.10.8.3
|
| 496 |
-
# via modal
|
| 497 |
-
types-toml==0.10.8.20240310
|
| 498 |
-
# via modal
|
| 499 |
-
typing-extensions==4.15.0
|
| 500 |
-
# via
|
| 501 |
-
# altair
|
| 502 |
-
# anthropic
|
| 503 |
-
# elevenlabs
|
| 504 |
-
# fastapi
|
| 505 |
-
# gradio
|
| 506 |
-
# gradio-client
|
| 507 |
-
# huggingface-hub
|
| 508 |
-
# langchain-core
|
| 509 |
-
# mcp
|
| 510 |
-
# modal
|
| 511 |
-
# openai
|
| 512 |
-
# pydantic
|
| 513 |
-
# pydantic-core
|
| 514 |
-
# synchronicity
|
| 515 |
-
# torch
|
| 516 |
-
# typer
|
| 517 |
-
# typing-inspection
|
| 518 |
-
typing-inspection==0.4.2
|
| 519 |
-
# via
|
| 520 |
-
# mcp
|
| 521 |
-
# pydantic
|
| 522 |
-
# pydantic-settings
|
| 523 |
-
tzdata==2025.2
|
| 524 |
-
# via pandas
|
| 525 |
-
update-checker==0.18.0
|
| 526 |
-
# via praw
|
| 527 |
-
urllib3==2.5.0
|
| 528 |
-
# via requests
|
| 529 |
-
uvicorn==0.38.0
|
| 530 |
-
# via
|
| 531 |
-
# gradio
|
| 532 |
-
# marimo
|
| 533 |
-
# mcp
|
| 534 |
-
watchfiles==1.1.1
|
| 535 |
-
# via modal
|
| 536 |
-
websocket-client==1.9.0
|
| 537 |
-
# via praw
|
| 538 |
-
websockets==15.0.1
|
| 539 |
-
# via
|
| 540 |
-
# elevenlabs
|
| 541 |
-
# marimo
|
| 542 |
-
werkzeug==3.1.4
|
| 543 |
-
# via flask
|
| 544 |
-
xxhash==3.6.0
|
| 545 |
-
# via langgraph
|
| 546 |
-
yarl==1.22.0
|
| 547 |
-
# via aiohttp
|
| 548 |
-
zstandard==0.25.0
|
| 549 |
-
# via langsmith
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/utils.py
DELETED
|
@@ -1,70 +0,0 @@
|
|
| 1 |
-
"""
|
| 2 |
-
Utility functions for the vibe-reader application
|
| 3 |
-
"""
|
| 4 |
-
|
| 5 |
-
import json
|
| 6 |
-
import re
|
| 7 |
-
from typing import Dict, Any, Optional
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
def parse_json_response(response: str) -> Optional[Dict[str, Any]]:
|
| 11 |
-
"""
|
| 12 |
-
Parse JSON from LLM response, handling various formats
|
| 13 |
-
|
| 14 |
-
Args:
|
| 15 |
-
response: Raw LLM response that may contain JSON
|
| 16 |
-
|
| 17 |
-
Returns:
|
| 18 |
-
Parsed JSON dict, or None if parsing fails
|
| 19 |
-
"""
|
| 20 |
-
# Remove markdown code blocks if present
|
| 21 |
-
cleaned = re.sub(r'```json\s*|\s*```', '', response, flags=re.IGNORECASE)
|
| 22 |
-
cleaned = cleaned.strip()
|
| 23 |
-
|
| 24 |
-
# Try to find JSON object in the response
|
| 25 |
-
json_match = re.search(r'\{.*\}', cleaned, re.DOTALL)
|
| 26 |
-
if json_match:
|
| 27 |
-
try:
|
| 28 |
-
return json.loads(json_match.group(0))
|
| 29 |
-
except json.JSONDecodeError as e:
|
| 30 |
-
print(f"JSON parsing error: {e}")
|
| 31 |
-
return None
|
| 32 |
-
|
| 33 |
-
return None
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
def extract_vibe_components(vibe_json: Dict[str, Any]) -> Dict[str, Any]:
|
| 37 |
-
"""
|
| 38 |
-
Extract and validate vibe components from parsed JSON
|
| 39 |
-
|
| 40 |
-
Args:
|
| 41 |
-
vibe_json: Parsed JSON from vibe extraction
|
| 42 |
-
|
| 43 |
-
Returns:
|
| 44 |
-
Dictionary with validated vibe components
|
| 45 |
-
"""
|
| 46 |
-
return {
|
| 47 |
-
"aesthetic_genre_keywords": vibe_json.get("aesthetic_genre_keywords", []),
|
| 48 |
-
"mood_atmosphere": vibe_json.get("mood_atmosphere", []),
|
| 49 |
-
"core_themes": vibe_json.get("core_themes", []),
|
| 50 |
-
"tropes": vibe_json.get("tropes", []),
|
| 51 |
-
"feels_like": vibe_json.get("feels_like", "")
|
| 52 |
-
}
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
def strip_thinking_tags(text: str) -> str:
|
| 56 |
-
"""
|
| 57 |
-
Remove <think>...</think> tags and any reasoning content from text
|
| 58 |
-
Qwen3 uses standard XML format: <think>...</think>
|
| 59 |
-
|
| 60 |
-
Args:
|
| 61 |
-
text: Text that may contain thinking tags
|
| 62 |
-
|
| 63 |
-
Returns:
|
| 64 |
-
Clean text without thinking tags
|
| 65 |
-
"""
|
| 66 |
-
# Remove <think>...</think> blocks
|
| 67 |
-
cleaned = re.sub(r'<think>.*?</think>', '', text, flags=re.DOTALL | re.IGNORECASE)
|
| 68 |
-
# Remove any leftover tags
|
| 69 |
-
cleaned = re.sub(r'</?think>', '', cleaned, flags=re.IGNORECASE)
|
| 70 |
-
return cleaned.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|