Spaces:
Sleeping
Sleeping
Cleo
commited on
Commit
·
e422038
1
Parent(s):
d1ccee8
upload supporting files
Browse files- agent/__init__.py +1 -0
- agent/agent.py +985 -0
- agent/prompts.py +156 -0
- agent/utils.py +70 -0
- app.py +3 -2
- assets/custom.css +59 -0
agent/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
"""Agent package for Vibe Reader"""
|
agent/agent.py
ADDED
|
@@ -0,0 +1,985 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
LangGraph Agent for Vibe Reader
|
| 3 |
+
Implements the agentic workflow for book recommendation based on visual vibes
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
import json
|
| 8 |
+
from typing import TypedDict, List, Dict, Any, Literal, Annotated
|
| 9 |
+
from operator import add
|
| 10 |
+
from openai import OpenAI
|
| 11 |
+
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
|
| 12 |
+
from langgraph.graph import StateGraph, END
|
| 13 |
+
from langgraph.types import interrupt
|
| 14 |
+
from dotenv import load_dotenv
|
| 15 |
+
|
| 16 |
+
load_dotenv()
|
| 17 |
+
|
| 18 |
+
# ============================================================================
|
| 19 |
+
# CONFIGURATION
|
| 20 |
+
# ============================================================================
|
| 21 |
+
|
| 22 |
+
NEBIUS_API_KEY = os.getenv("NEBIUS_API_KEY")
|
| 23 |
+
NEBIUS_BASE_URL = "https://api.tokenfactory.nebius.com/v1/"
|
| 24 |
+
VLM_MODEL = "google/gemma-3-27b-it-fast"
|
| 25 |
+
REASONING_MODEL = "Qwen/Qwen3-30B-A3B-Thinking-2507"
|
| 26 |
+
FAST_MODEL = "moonshotai/Kimi-K2-Instruct" # Non-thinking model for simple tasks
|
| 27 |
+
|
| 28 |
+
MODAL_VECTOR_STORE_URL = os.getenv("MODAL_VECTOR_STORE_URL", "https://placeholder-modal-url.modal.run/search")
|
| 29 |
+
GOOGLE_BOOKS_MCP_URL = os.getenv("GOOGLE_BOOKS_MCP_URL", "https://mcp-1st-birthday-google-books-mcp.hf.space")
|
| 30 |
+
|
| 31 |
+
NUM_BOOKS_TO_RETRIEVE = 10 # Target number of books with valid descriptions
|
| 32 |
+
NUM_BOOKS_TO_FETCH = 15 # Fetch extra to account for books without descriptions
|
| 33 |
+
NUM_FINAL_BOOKS = 3
|
| 34 |
+
|
| 35 |
+
# ============================================================================
|
| 36 |
+
# STATE DEFINITION
|
| 37 |
+
# ============================================================================
|
| 38 |
+
|
| 39 |
+
class AgentState(TypedDict):
|
| 40 |
+
"""State maintained throughout the agent workflow"""
|
| 41 |
+
# User inputs
|
| 42 |
+
images: List[str] # List of image URLs or base64 encoded images
|
| 43 |
+
|
| 44 |
+
# Conversation history (no reducer - we manage the list directly)
|
| 45 |
+
messages: List[Dict[str, str]]
|
| 46 |
+
|
| 47 |
+
# Vibe components (from JSON extraction)
|
| 48 |
+
aesthetic_genre_keywords: List[str] # Genre/aesthetic keywords
|
| 49 |
+
mood_atmosphere: List[str] # Mood descriptors
|
| 50 |
+
core_themes: List[str] # Core themes
|
| 51 |
+
tropes: List[str] # Story tropes
|
| 52 |
+
feels_like: str # User-facing "feels like" description (what gets refined)
|
| 53 |
+
vibe_refinement_count: int # Number of refinement iterations
|
| 54 |
+
|
| 55 |
+
# Book retrieval
|
| 56 |
+
retrieved_books: List[Dict[str, str]] # List of {title, author} dicts
|
| 57 |
+
books_with_metadata: List[Dict[str, Any]] # Enriched with Google Books data
|
| 58 |
+
|
| 59 |
+
# Narrowing process
|
| 60 |
+
q1_question: str # First narrowing question (stored for resume)
|
| 61 |
+
q2_question: str # Second narrowing question (stored for resume)
|
| 62 |
+
user_preferences: Dict[str, Any] # Accumulated user preferences from Q&A (question + answer pairs)
|
| 63 |
+
final_books: List[Dict[str, Any]] # Final 3 books
|
| 64 |
+
|
| 65 |
+
# Final outputs
|
| 66 |
+
soundtrack_url: str # ElevenLabs generated soundtrack
|
| 67 |
+
|
| 68 |
+
# Debug/reasoning (no reducer - we manage the list directly)
|
| 69 |
+
reasoning: List[str]
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
# ============================================================================
|
| 73 |
+
# HELPER FUNCTIONS
|
| 74 |
+
# ============================================================================
|
| 75 |
+
|
| 76 |
+
def create_openai_client() -> OpenAI:
|
| 77 |
+
"""Create OpenAI client configured for Nebius"""
|
| 78 |
+
return OpenAI(api_key=NEBIUS_API_KEY, base_url=NEBIUS_BASE_URL)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def call_llm(messages: List[Dict[str, Any]], temperature: float = 0.7, model: str = REASONING_MODEL, include_reasoning: bool = False, max_tokens: int = 2500):
|
| 82 |
+
"""Generic LLM call for reasoning and decision-making using Nebius API
|
| 83 |
+
|
| 84 |
+
Args:
|
| 85 |
+
messages: Conversation messages
|
| 86 |
+
temperature: Sampling temperature
|
| 87 |
+
model: Model to use
|
| 88 |
+
include_reasoning: If True, returns tuple of (content, reasoning_text)
|
| 89 |
+
max_tokens: Maximum tokens for response (default 1000)
|
| 90 |
+
|
| 91 |
+
Returns:
|
| 92 |
+
str or tuple: Response content, or (content, reasoning) if include_reasoning=True
|
| 93 |
+
"""
|
| 94 |
+
client = create_openai_client() # Uses Nebius
|
| 95 |
+
response = client.chat.completions.create(
|
| 96 |
+
model=model,
|
| 97 |
+
messages=messages,
|
| 98 |
+
temperature=temperature,
|
| 99 |
+
max_tokens=max_tokens
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
message = response.choices[0].message
|
| 103 |
+
content = message.content or ""
|
| 104 |
+
|
| 105 |
+
if include_reasoning:
|
| 106 |
+
# Nebius API returns reasoning in a separate field for Thinking models
|
| 107 |
+
reasoning = getattr(message, 'reasoning_content', None) or ""
|
| 108 |
+
|
| 109 |
+
if reasoning:
|
| 110 |
+
# If content is empty, log a warning but don't try to extract from reasoning
|
| 111 |
+
# (the last line of reasoning is usually garbage, not the answer)
|
| 112 |
+
if not content.strip():
|
| 113 |
+
print(f"[DEBUG AGENT] Warning: LLM returned empty content with reasoning. This may indicate an issue.")
|
| 114 |
+
return content, reasoning
|
| 115 |
+
|
| 116 |
+
# Fallback: try parsing <think>...</think> tags from content
|
| 117 |
+
import re
|
| 118 |
+
think_match = re.match(r'<think>(.*?)</think>(.*)', content, re.DOTALL)
|
| 119 |
+
if think_match:
|
| 120 |
+
reasoning = think_match.group(1).strip()
|
| 121 |
+
final_content = think_match.group(2).strip()
|
| 122 |
+
return final_content, reasoning
|
| 123 |
+
|
| 124 |
+
# No reasoning found
|
| 125 |
+
return content, "No reasoning trace found"
|
| 126 |
+
|
| 127 |
+
return content
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
# ============================================================================
|
| 131 |
+
# NODES
|
| 132 |
+
# ============================================================================
|
| 133 |
+
|
| 134 |
+
def generate_initial_vibe(state: AgentState) -> AgentState:
|
| 135 |
+
"""Node: Generate initial vibe description from uploaded images using VLM"""
|
| 136 |
+
from .prompts import VIBE_EXTRACTION
|
| 137 |
+
from .utils import parse_json_response, extract_vibe_components
|
| 138 |
+
|
| 139 |
+
client = create_openai_client()
|
| 140 |
+
|
| 141 |
+
# Construct message with images
|
| 142 |
+
content = [{"type": "text", "text": "Analyze these images and extract the vibe:"}]
|
| 143 |
+
for img in state["images"]:
|
| 144 |
+
# Convert local file paths to base64 data URLs if needed
|
| 145 |
+
if img.startswith(('http://', 'https://', 'data:')):
|
| 146 |
+
# Already a valid URL
|
| 147 |
+
image_url = img
|
| 148 |
+
else:
|
| 149 |
+
# Local file path - convert to base64
|
| 150 |
+
import base64
|
| 151 |
+
from pathlib import Path
|
| 152 |
+
|
| 153 |
+
img_path = Path(img)
|
| 154 |
+
if img_path.exists():
|
| 155 |
+
with open(img_path, 'rb') as f:
|
| 156 |
+
img_data = base64.b64encode(f.read()).decode('utf-8')
|
| 157 |
+
# Determine MIME type from extension
|
| 158 |
+
ext = img_path.suffix.lower()
|
| 159 |
+
mime_types = {'.jpg': 'jpeg', '.jpeg': 'jpeg', '.png': 'png', '.gif': 'gif', '.webp': 'webp'}
|
| 160 |
+
mime = mime_types.get(ext, 'jpeg')
|
| 161 |
+
image_url = f"data:image/{mime};base64,{img_data}"
|
| 162 |
+
else:
|
| 163 |
+
state["reasoning"].append(f"⚠️ Warning: Image file not found: {img}")
|
| 164 |
+
continue
|
| 165 |
+
|
| 166 |
+
content.append({
|
| 167 |
+
"type": "image_url",
|
| 168 |
+
"image_url": {"url": image_url}
|
| 169 |
+
})
|
| 170 |
+
|
| 171 |
+
response = client.chat.completions.create(
|
| 172 |
+
model=VLM_MODEL,
|
| 173 |
+
messages=[
|
| 174 |
+
{"role": "system", "content": VIBE_EXTRACTION},
|
| 175 |
+
{"role": "user", "content": content}
|
| 176 |
+
],
|
| 177 |
+
temperature=0.7,
|
| 178 |
+
max_tokens=2000
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
vibe_json_str = response.choices[0].message.content
|
| 182 |
+
|
| 183 |
+
# Parse JSON response
|
| 184 |
+
vibe_json = parse_json_response(vibe_json_str)
|
| 185 |
+
if not vibe_json:
|
| 186 |
+
state["reasoning"].append(f"❌ Failed to parse vibe JSON. Raw response: {vibe_json_str[:200]}")
|
| 187 |
+
# Fallback to simple extraction
|
| 188 |
+
state["feels_like"] = vibe_json_str
|
| 189 |
+
state["aesthetic_genre_keywords"] = []
|
| 190 |
+
state["mood_atmosphere"] = []
|
| 191 |
+
state["core_themes"] = []
|
| 192 |
+
state["tropes"] = []
|
| 193 |
+
else:
|
| 194 |
+
# Extract components
|
| 195 |
+
components = extract_vibe_components(vibe_json)
|
| 196 |
+
state["aesthetic_genre_keywords"] = components["aesthetic_genre_keywords"]
|
| 197 |
+
state["mood_atmosphere"] = components["mood_atmosphere"]
|
| 198 |
+
state["core_themes"] = components["core_themes"]
|
| 199 |
+
state["tropes"] = components["tropes"]
|
| 200 |
+
state["feels_like"] = components["feels_like"]
|
| 201 |
+
|
| 202 |
+
state["reasoning"].append(f"✅ Extracted vibe components:\n"
|
| 203 |
+
f" - Aesthetics: {', '.join(state['aesthetic_genre_keywords'])}\n"
|
| 204 |
+
f" - Mood: {', '.join(state['mood_atmosphere'])}\n"
|
| 205 |
+
f" - Themes: {', '.join(state['core_themes'])}\n"
|
| 206 |
+
f" - Tropes: {', '.join(state['tropes'])}")
|
| 207 |
+
|
| 208 |
+
state["vibe_refinement_count"] = 0
|
| 209 |
+
|
| 210 |
+
# Only show feels_like to user
|
| 211 |
+
assistant_message = f"Here's the vibe I'm getting from your images:\n\n{state['feels_like']}\n\nDoes this capture what you're looking for, or would you like me to adjust it?"
|
| 212 |
+
state["messages"].append({
|
| 213 |
+
"role": "assistant",
|
| 214 |
+
"content": assistant_message
|
| 215 |
+
})
|
| 216 |
+
|
| 217 |
+
# Wait for user feedback; when resumed, user_response will contain their reply
|
| 218 |
+
user_response = interrupt(assistant_message)
|
| 219 |
+
if user_response:
|
| 220 |
+
state["messages"].append({"role": "user", "content": user_response})
|
| 221 |
+
|
| 222 |
+
return state
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def refine_vibe(state: AgentState) -> AgentState:
|
| 226 |
+
"""Node: Refine vibe based on user feedback - only refines feels_like portion"""
|
| 227 |
+
from .prompts import VIBE_REFINEMENT
|
| 228 |
+
from .utils import strip_thinking_tags
|
| 229 |
+
|
| 230 |
+
print("[DEBUG AGENT] refine_vibe node started")
|
| 231 |
+
|
| 232 |
+
# Get the latest user message (feedback)
|
| 233 |
+
user_messages = [m for m in state["messages"] if m.get("role") == "user"]
|
| 234 |
+
print(f"[DEBUG AGENT] Found {len(user_messages)} user messages")
|
| 235 |
+
if not user_messages:
|
| 236 |
+
state["reasoning"].append("⚠️ No user feedback found for refinement; skipping refine_vibe step")
|
| 237 |
+
return state
|
| 238 |
+
|
| 239 |
+
user_feedback = user_messages[-1]["content"]
|
| 240 |
+
print(f"[DEBUG AGENT] user_feedback: {user_feedback[:50] if user_feedback else 'None'}...")
|
| 241 |
+
|
| 242 |
+
# Use LLM to refine only the feels_like description
|
| 243 |
+
# Keep other vibe components (aesthetics, themes, tropes) unchanged
|
| 244 |
+
messages = [
|
| 245 |
+
{"role": "system", "content": VIBE_REFINEMENT},
|
| 246 |
+
{"role": "user", "content": f"Current 'feels like' description: {state['feels_like']}\n\nUser feedback: {user_feedback}\n\nProvide the refined 'feels like' description (4-5 sentences):"}
|
| 247 |
+
]
|
| 248 |
+
|
| 249 |
+
print(f"[DEBUG AGENT] Calling LLM for refinement...")
|
| 250 |
+
refined_feels_like, reasoning = call_llm(messages, temperature=0.7, include_reasoning=True)
|
| 251 |
+
print(f"[DEBUG AGENT] LLM returned content: {refined_feels_like[:200] if refined_feels_like else 'None'}...")
|
| 252 |
+
print(f"[DEBUG AGENT] LLM reasoning: {reasoning[:200] if reasoning else 'None'}...")
|
| 253 |
+
|
| 254 |
+
# Ensure no thinking tags leak into the feels_like
|
| 255 |
+
refined_feels_like = strip_thinking_tags(refined_feels_like)
|
| 256 |
+
|
| 257 |
+
# Update only the feels_like portion
|
| 258 |
+
state["feels_like"] = refined_feels_like
|
| 259 |
+
state["vibe_refinement_count"] += 1
|
| 260 |
+
|
| 261 |
+
assistant_message = f"I've refined the vibe:\n\n{refined_feels_like}\n\nIs this better, or would you like further adjustments?"
|
| 262 |
+
print(f"[DEBUG AGENT] Adding assistant message to state, current msg count: {len(state['messages'])}")
|
| 263 |
+
state["messages"].append({
|
| 264 |
+
"role": "assistant",
|
| 265 |
+
"content": assistant_message
|
| 266 |
+
})
|
| 267 |
+
state["reasoning"].append(f"🧠 REASONING (Vibe Refinement #{state['vibe_refinement_count']}):\n{reasoning}\n")
|
| 268 |
+
print(f"[DEBUG AGENT] After append, msg count: {len(state['messages'])}")
|
| 269 |
+
|
| 270 |
+
# Wait for user feedback on the refined vibe
|
| 271 |
+
print(f"[DEBUG AGENT] About to call interrupt()")
|
| 272 |
+
user_response = interrupt(assistant_message)
|
| 273 |
+
print(f"[DEBUG AGENT] interrupt() returned: {user_response}")
|
| 274 |
+
if user_response:
|
| 275 |
+
state["messages"].append({"role": "user", "content": user_response})
|
| 276 |
+
|
| 277 |
+
return state
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
def check_vibe_satisfaction(state: AgentState) -> Literal["refine", "retrieve"]:
|
| 281 |
+
"""Conditional edge: Check if user is satisfied with vibe description"""
|
| 282 |
+
from .prompts import VIBE_SATISFACTION_CHECKER
|
| 283 |
+
|
| 284 |
+
# Get the last user message
|
| 285 |
+
user_messages = [m for m in state["messages"] if m.get("role") == "user"]
|
| 286 |
+
if not user_messages:
|
| 287 |
+
# No explicit feedback; default to moving forward
|
| 288 |
+
return "retrieve"
|
| 289 |
+
|
| 290 |
+
raw_content = user_messages[-1]["content"]
|
| 291 |
+
|
| 292 |
+
# Content may occasionally be a non-string (e.g., list from upstream tools);
|
| 293 |
+
# normalize to text before passing into the LLM.
|
| 294 |
+
if isinstance(raw_content, str):
|
| 295 |
+
last_user_msg = raw_content
|
| 296 |
+
elif isinstance(raw_content, list):
|
| 297 |
+
# Join any text-like chunks into a single string representation
|
| 298 |
+
last_user_msg = " ".join(str(x) for x in raw_content)
|
| 299 |
+
else:
|
| 300 |
+
last_user_msg = str(raw_content)
|
| 301 |
+
|
| 302 |
+
# Use LLM to determine satisfaction
|
| 303 |
+
messages = [
|
| 304 |
+
{"role": "system", "content": VIBE_SATISFACTION_CHECKER},
|
| 305 |
+
{"role": "user", "content": f"User's response: {last_user_msg}"}
|
| 306 |
+
]
|
| 307 |
+
|
| 308 |
+
decision, reasoning = call_llm(messages, temperature=0.0, include_reasoning=True)
|
| 309 |
+
decision = decision.strip().lower() if decision else ""
|
| 310 |
+
|
| 311 |
+
print(f"[DEBUG] check_vibe_satisfaction - user said: '{last_user_msg}'")
|
| 312 |
+
print(f"[DEBUG] check_vibe_satisfaction - LLM decision: '{decision}'")
|
| 313 |
+
|
| 314 |
+
state["reasoning"].append(f"🧠 REASONING (Satisfaction Check):\n{reasoning}\n\n→ Decision: {decision}")
|
| 315 |
+
|
| 316 |
+
if "satisfied" in decision and "not_satisfied" not in decision:
|
| 317 |
+
print(f"[DEBUG] check_vibe_satisfaction -> RETRIEVE (user satisfied)")
|
| 318 |
+
return "retrieve"
|
| 319 |
+
else:
|
| 320 |
+
print(f"[DEBUG] check_vibe_satisfaction -> REFINE (user not satisfied)")
|
| 321 |
+
return "refine"
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
def retrieve_books(state: AgentState) -> AgentState:
|
| 325 |
+
"""Node: Retrieve books from Modal vector store"""
|
| 326 |
+
import requests
|
| 327 |
+
|
| 328 |
+
# Construct full vibe query from all components
|
| 329 |
+
vibe_query = f"{state['feels_like']}\n\nGenres/Aesthetics: {', '.join(state['aesthetic_genre_keywords'])}\nMood: {', '.join(state['mood_atmosphere'])}\nThemes: {', '.join(state['core_themes'])}\nTropes: {', '.join(state['tropes'])}"
|
| 330 |
+
|
| 331 |
+
try:
|
| 332 |
+
# Call Modal vector store endpoint
|
| 333 |
+
print(f"DEBUG: Calling Modal URL: {MODAL_VECTOR_STORE_URL}")
|
| 334 |
+
state["reasoning"].append(f"📚 Calling Modal vector store with full vibe profile")
|
| 335 |
+
state["reasoning"].append(f"URL: {MODAL_VECTOR_STORE_URL}")
|
| 336 |
+
|
| 337 |
+
response = requests.post(
|
| 338 |
+
MODAL_VECTOR_STORE_URL,
|
| 339 |
+
json={
|
| 340 |
+
"query": vibe_query,
|
| 341 |
+
"top_k": NUM_BOOKS_TO_RETRIEVE,
|
| 342 |
+
"min_books_per_vibe": 1
|
| 343 |
+
},
|
| 344 |
+
timeout=180 # Long timeout for cold start
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
print(f"DEBUG: Response status: {response.status_code}")
|
| 348 |
+
print(f"DEBUG: Response text: {response.text[:500] if response.text else 'empty'}")
|
| 349 |
+
|
| 350 |
+
if response.status_code == 200:
|
| 351 |
+
data = response.json()
|
| 352 |
+
|
| 353 |
+
# Extract books from search results with diversity across vibes
|
| 354 |
+
# Modal returns: {"results": [{"books": [...], "vibe_data": {...}, "score": ...}], ...}
|
| 355 |
+
# Strategy: Take up to MAX_BOOKS_PER_VIBE from each vibe to ensure diversity
|
| 356 |
+
MAX_BOOKS_PER_VIBE = 5
|
| 357 |
+
|
| 358 |
+
books = []
|
| 359 |
+
seen = set() # Track seen books for deduplication
|
| 360 |
+
|
| 361 |
+
for result in data.get("results", []):
|
| 362 |
+
vibe_score = result.get("score", 0)
|
| 363 |
+
vibe_books = result.get("books", [])
|
| 364 |
+
books_from_this_vibe = 0
|
| 365 |
+
|
| 366 |
+
for book in vibe_books:
|
| 367 |
+
if books_from_this_vibe >= MAX_BOOKS_PER_VIBE:
|
| 368 |
+
break
|
| 369 |
+
|
| 370 |
+
title = book.get("title", "")
|
| 371 |
+
author = book.get("author", "")
|
| 372 |
+
key = (title.lower(), author.lower())
|
| 373 |
+
|
| 374 |
+
# Skip duplicates
|
| 375 |
+
if key in seen:
|
| 376 |
+
continue
|
| 377 |
+
|
| 378 |
+
seen.add(key)
|
| 379 |
+
books.append({
|
| 380 |
+
"title": title,
|
| 381 |
+
"author": author,
|
| 382 |
+
"vibe_score": vibe_score # Track which vibe it came from
|
| 383 |
+
})
|
| 384 |
+
books_from_this_vibe += 1
|
| 385 |
+
|
| 386 |
+
# Fetch extra books to account for filtering (books without descriptions)
|
| 387 |
+
books = books[:NUM_BOOKS_TO_FETCH]
|
| 388 |
+
|
| 389 |
+
state["reasoning"].append(f"Retrieved {len(books)} books from {len(data.get('results', []))} vibes (max {MAX_BOOKS_PER_VIBE} per vibe)")
|
| 390 |
+
|
| 391 |
+
else:
|
| 392 |
+
raise Exception(f"HTTP {response.status_code}: {response.text[:200]}")
|
| 393 |
+
|
| 394 |
+
except Exception as e:
|
| 395 |
+
# Fallback to mock data for development
|
| 396 |
+
print(f"DEBUG ERROR: Vector store call failed: {e}")
|
| 397 |
+
import traceback
|
| 398 |
+
traceback.print_exc()
|
| 399 |
+
state["reasoning"].append(f"Vector store call failed: {e}. Using mock data.")
|
| 400 |
+
books = [
|
| 401 |
+
{"title": "The Night Circus", "author": "Erin Morgenstern"},
|
| 402 |
+
{"title": "The Ocean at the End of the Lane", "author": "Neil Gaiman"},
|
| 403 |
+
{"title": "The Starless Sea", "author": "Erin Morgenstern"},
|
| 404 |
+
{"title": "Piranesi", "author": "Susanna Clarke"},
|
| 405 |
+
{"title": "The House in the Cerulean Sea", "author": "TJ Klune"},
|
| 406 |
+
{"title": "Howl's Moving Castle", "author": "Diana Wynne Jones"},
|
| 407 |
+
{"title": "Circe", "author": "Madeline Miller"},
|
| 408 |
+
{"title": "The Invisible Life of Addie LaRue", "author": "V.E. Schwab"},
|
| 409 |
+
{"title": "Mexican Gothic", "author": "Silvia Moreno-Garcia"},
|
| 410 |
+
{"title": "The Ten Thousand Doors of January", "author": "Alix E. Harrow"},
|
| 411 |
+
{"title": "The Goblin Emperor", "author": "Katherine Addison"},
|
| 412 |
+
{"title": "The Priory of the Orange Tree", "author": "Samantha Shannon"},
|
| 413 |
+
{"title": "Uprooted", "author": "Naomi Novik"},
|
| 414 |
+
{"title": "The Bear and the Nightingale", "author": "Katherine Arden"},
|
| 415 |
+
{"title": "The City of Brass", "author": "S.A. Chakraborty"}
|
| 416 |
+
]
|
| 417 |
+
|
| 418 |
+
state["retrieved_books"] = books
|
| 419 |
+
state["reasoning"].append(f"Total books in state: {len(books)}")
|
| 420 |
+
|
| 421 |
+
return state
|
| 422 |
+
|
| 423 |
+
|
| 424 |
+
def call_google_books_mcp(title: str, author: str = "") -> Dict[str, Any]:
|
| 425 |
+
"""
|
| 426 |
+
Call the Google Books MCP server via Gradio MCP endpoint.
|
| 427 |
+
|
| 428 |
+
Args:
|
| 429 |
+
title: Book title
|
| 430 |
+
author: Book author (optional)
|
| 431 |
+
|
| 432 |
+
Returns:
|
| 433 |
+
Book metadata dict or None if not found
|
| 434 |
+
"""
|
| 435 |
+
import requests
|
| 436 |
+
|
| 437 |
+
try:
|
| 438 |
+
# Gradio MCP endpoint (Streamable HTTP transport)
|
| 439 |
+
mcp_url = f"{GOOGLE_BOOKS_MCP_URL}/gradio_api/mcp/"
|
| 440 |
+
|
| 441 |
+
# MCP uses JSON-RPC style calls
|
| 442 |
+
payload = {
|
| 443 |
+
"jsonrpc": "2.0",
|
| 444 |
+
"method": "tools/call",
|
| 445 |
+
"params": {
|
| 446 |
+
"name": "google_books_mcp_search_book_by_title_author",
|
| 447 |
+
"arguments": {
|
| 448 |
+
"title": title,
|
| 449 |
+
"author": author
|
| 450 |
+
}
|
| 451 |
+
},
|
| 452 |
+
"id": 1
|
| 453 |
+
}
|
| 454 |
+
|
| 455 |
+
response = requests.post(
|
| 456 |
+
mcp_url,
|
| 457 |
+
json=payload,
|
| 458 |
+
headers={
|
| 459 |
+
"Content-Type": "application/json",
|
| 460 |
+
"Accept": "application/json, text/event-stream"
|
| 461 |
+
},
|
| 462 |
+
timeout=30
|
| 463 |
+
)
|
| 464 |
+
|
| 465 |
+
if response.status_code != 200:
|
| 466 |
+
print(f"[DEBUG] Google Books MCP failed: {response.status_code} - {response.text[:200]}")
|
| 467 |
+
return None
|
| 468 |
+
|
| 469 |
+
# Parse SSE response
|
| 470 |
+
for line in response.text.split('\n'):
|
| 471 |
+
if line.startswith('data: '):
|
| 472 |
+
try:
|
| 473 |
+
data = json.loads(line[6:])
|
| 474 |
+
if "result" in data:
|
| 475 |
+
result = data["result"]
|
| 476 |
+
if isinstance(result, dict):
|
| 477 |
+
# Check if it's a direct book response
|
| 478 |
+
if "success" in result and "book" in result:
|
| 479 |
+
if result.get("success") and result.get("book"):
|
| 480 |
+
return result["book"]
|
| 481 |
+
# Check if it's a content array response
|
| 482 |
+
elif "content" in result:
|
| 483 |
+
for content_item in result["content"]:
|
| 484 |
+
if content_item.get("type") == "text":
|
| 485 |
+
text_content = content_item.get("text", "")
|
| 486 |
+
if text_content.strip():
|
| 487 |
+
try:
|
| 488 |
+
book_data = json.loads(text_content)
|
| 489 |
+
if book_data.get("success") and book_data.get("found"):
|
| 490 |
+
return book_data.get("book")
|
| 491 |
+
except json.JSONDecodeError:
|
| 492 |
+
continue
|
| 493 |
+
return result
|
| 494 |
+
except json.JSONDecodeError:
|
| 495 |
+
continue
|
| 496 |
+
|
| 497 |
+
return None
|
| 498 |
+
|
| 499 |
+
except Exception as e:
|
| 500 |
+
print(f"[DEBUG] Google Books MCP error: {e}")
|
| 501 |
+
return None
|
| 502 |
+
|
| 503 |
+
|
| 504 |
+
|
| 505 |
+
|
| 506 |
+
def fetch_book_metadata(state: AgentState) -> AgentState:
|
| 507 |
+
"""Node: Fetch metadata for retrieved books via Google Books API"""
|
| 508 |
+
print(f"[DEBUG AGENT] fetch_book_metadata node started with {len(state.get('retrieved_books', []))} books")
|
| 509 |
+
|
| 510 |
+
enriched_books = []
|
| 511 |
+
skipped_books = []
|
| 512 |
+
state["reasoning"].append(f"📖 Fetching metadata from Google Books (need {NUM_BOOKS_TO_RETRIEVE} with descriptions)...")
|
| 513 |
+
|
| 514 |
+
for book in state["retrieved_books"]:
|
| 515 |
+
# Stop once we have enough books with valid descriptions
|
| 516 |
+
if len(enriched_books) >= NUM_BOOKS_TO_RETRIEVE:
|
| 517 |
+
print(f"[DEBUG] Reached target of {NUM_BOOKS_TO_RETRIEVE} books, stopping")
|
| 518 |
+
break
|
| 519 |
+
|
| 520 |
+
try:
|
| 521 |
+
# Use Google Books MCP server
|
| 522 |
+
metadata = call_google_books_mcp(book['title'], book['author'])
|
| 523 |
+
|
| 524 |
+
if metadata and metadata.get("title"):
|
| 525 |
+
description = metadata.get("description", "")
|
| 526 |
+
|
| 527 |
+
# FILTER: Skip books without meaningful descriptions
|
| 528 |
+
if not description or len(description.strip()) < 50:
|
| 529 |
+
skipped_books.append(book['title'])
|
| 530 |
+
print(f"[DEBUG] Skipping '{book['title']}' - no/short description ({len(description.strip()) if description else 0} chars)")
|
| 531 |
+
continue
|
| 532 |
+
|
| 533 |
+
# Format authors as string
|
| 534 |
+
authors = metadata.get("authors", [])
|
| 535 |
+
author_str = ", ".join(authors) if isinstance(authors, list) else authors or book["author"]
|
| 536 |
+
|
| 537 |
+
enriched_books.append({
|
| 538 |
+
"title": metadata.get("title", book["title"]),
|
| 539 |
+
"author": author_str,
|
| 540 |
+
"description": description,
|
| 541 |
+
"cover_url": metadata.get("thumbnail"),
|
| 542 |
+
"isbn": metadata.get("isbn"),
|
| 543 |
+
"published_year": metadata.get("published_date", "")[:4] if metadata.get("published_date") else None,
|
| 544 |
+
"page_count": metadata.get("page_count"),
|
| 545 |
+
"categories": metadata.get("categories", []),
|
| 546 |
+
"preview_link": metadata.get("preview_link"),
|
| 547 |
+
"info_link": metadata.get("info_link")
|
| 548 |
+
})
|
| 549 |
+
print(f"[DEBUG] Found metadata for: {book['title']} ({len(description)} chars) [{len(enriched_books)}/{NUM_BOOKS_TO_RETRIEVE}]")
|
| 550 |
+
else:
|
| 551 |
+
# No results found - skip
|
| 552 |
+
skipped_books.append(book['title'])
|
| 553 |
+
print(f"[DEBUG] Skipping '{book['title']}' - no Google Books results")
|
| 554 |
+
|
| 555 |
+
except Exception as e:
|
| 556 |
+
# On any error, skip the book
|
| 557 |
+
skipped_books.append(book['title'])
|
| 558 |
+
state["reasoning"].append(f"Error fetching metadata for '{book['title']}': {str(e)}")
|
| 559 |
+
|
| 560 |
+
state["books_with_metadata"] = enriched_books
|
| 561 |
+
|
| 562 |
+
if skipped_books:
|
| 563 |
+
state["reasoning"].append(f"⚠️ Skipped {len(skipped_books)} books without descriptions")
|
| 564 |
+
state["reasoning"].append(f"✅ Found {len(enriched_books)}/{NUM_BOOKS_TO_RETRIEVE} books with full metadata")
|
| 565 |
+
|
| 566 |
+
return state
|
| 567 |
+
|
| 568 |
+
|
| 569 |
+
def _generate_narrowing_question(state: AgentState, question_num: int) -> tuple:
|
| 570 |
+
"""Helper: Generate a narrowing question"""
|
| 571 |
+
from .prompts import NARROWING_QUESTION_GENERATOR
|
| 572 |
+
|
| 573 |
+
books_summary_parts = []
|
| 574 |
+
for i, b in enumerate(state["books_with_metadata"], 1):
|
| 575 |
+
desc = b.get('description', 'No description')
|
| 576 |
+
cats = ', '.join(b.get('categories', [])) if b.get('categories') else 'Uncategorized'
|
| 577 |
+
books_summary_parts.append(f"Book {i}: {b['title']} by {b['author']}\n Categories: {cats}\n Description: {desc}")
|
| 578 |
+
books_summary = "\n\n".join(books_summary_parts)
|
| 579 |
+
|
| 580 |
+
vibe_context = f"Feels like: {state['feels_like']}\nAesthetics: {', '.join(state['aesthetic_genre_keywords'])}\nMood: {', '.join(state['mood_atmosphere'])}\nThemes: {', '.join(state['core_themes'])}"
|
| 581 |
+
|
| 582 |
+
is_last = question_num >= 2
|
| 583 |
+
question_context = f"This is question {question_num} of 2." + (" THIS IS THE LAST QUESTION - make it count!" if is_last else "")
|
| 584 |
+
|
| 585 |
+
user_prompt = f"Books to narrow down:\n{books_summary}\n\nVibe:\n{vibe_context}\n\nPrevious preferences: {json.dumps(state.get('user_preferences', {}), indent=2)}\n\n{question_context}\n\nGenerate an either/or question:"
|
| 586 |
+
|
| 587 |
+
messages = [
|
| 588 |
+
{"role": "system", "content": NARROWING_QUESTION_GENERATOR},
|
| 589 |
+
{"role": "user", "content": user_prompt}
|
| 590 |
+
]
|
| 591 |
+
|
| 592 |
+
return call_llm(messages, temperature=0.8, model=FAST_MODEL, include_reasoning=True)
|
| 593 |
+
|
| 594 |
+
|
| 595 |
+
def generate_question_1(state: AgentState) -> AgentState:
|
| 596 |
+
"""Node: Generate Q1 and add to messages"""
|
| 597 |
+
print(f"[DEBUG AGENT] generate_question_1")
|
| 598 |
+
|
| 599 |
+
question, reasoning = _generate_narrowing_question(state, 1)
|
| 600 |
+
|
| 601 |
+
state["narrowing_questions_asked"] = 1
|
| 602 |
+
state["q1_question"] = question
|
| 603 |
+
state["reasoning"].append(f"🧠 REASONING (Narrowing Question #1):\n{reasoning}\n\n→ Question: {question}")
|
| 604 |
+
|
| 605 |
+
assistant_message = f"To help me find the perfect match:\n\n{question}"
|
| 606 |
+
print(f"[DEBUG AGENT] Q1: {question[:60]}...")
|
| 607 |
+
|
| 608 |
+
state["messages"].append({"role": "assistant", "content": assistant_message})
|
| 609 |
+
return state
|
| 610 |
+
|
| 611 |
+
|
| 612 |
+
def wait_for_answer_1(state: AgentState) -> AgentState:
|
| 613 |
+
"""Node: Wait for user's answer to Q1"""
|
| 614 |
+
print(f"[DEBUG AGENT] wait_for_answer_1")
|
| 615 |
+
|
| 616 |
+
user_answer = interrupt("Waiting for Q1 answer")
|
| 617 |
+
if user_answer:
|
| 618 |
+
state["messages"].append({"role": "user", "content": user_answer})
|
| 619 |
+
state["user_preferences"]["q1"] = {
|
| 620 |
+
"question": state.get("q1_question", ""),
|
| 621 |
+
"answer": user_answer
|
| 622 |
+
}
|
| 623 |
+
print(f"[DEBUG AGENT] Q1 answered: {user_answer}")
|
| 624 |
+
return state
|
| 625 |
+
|
| 626 |
+
|
| 627 |
+
def generate_question_2(state: AgentState) -> AgentState:
|
| 628 |
+
"""Node: Generate Q2 and add to messages"""
|
| 629 |
+
print(f"[DEBUG AGENT] generate_question_2")
|
| 630 |
+
|
| 631 |
+
question, reasoning = _generate_narrowing_question(state, 2)
|
| 632 |
+
|
| 633 |
+
state["narrowing_questions_asked"] = 2
|
| 634 |
+
state["q2_question"] = question
|
| 635 |
+
state["reasoning"].append(f"🧠 REASONING (Narrowing Question #2):\n{reasoning}\n\n→ Question: {question}")
|
| 636 |
+
|
| 637 |
+
assistant_message = f"To help me find the perfect match:\n\n{question}"
|
| 638 |
+
print(f"[DEBUG AGENT] Q2: {question[:60]}...")
|
| 639 |
+
|
| 640 |
+
state["messages"].append({"role": "assistant", "content": assistant_message})
|
| 641 |
+
return state
|
| 642 |
+
|
| 643 |
+
|
| 644 |
+
def wait_for_answer_2(state: AgentState) -> AgentState:
|
| 645 |
+
"""Node: Wait for user's answer to Q2"""
|
| 646 |
+
print(f"[DEBUG AGENT] wait_for_answer_2")
|
| 647 |
+
|
| 648 |
+
user_answer = interrupt("Waiting for Q2 answer")
|
| 649 |
+
if user_answer:
|
| 650 |
+
state["messages"].append({"role": "user", "content": user_answer})
|
| 651 |
+
state["user_preferences"]["q2"] = {
|
| 652 |
+
"question": state.get("q2_question", ""),
|
| 653 |
+
"answer": user_answer
|
| 654 |
+
}
|
| 655 |
+
print(f"[DEBUG AGENT] Q2 answered: {user_answer}")
|
| 656 |
+
return state
|
| 657 |
+
|
| 658 |
+
|
| 659 |
+
def check_narrowing_complete(state: AgentState) -> Literal["ask_more", "finalize"]:
|
| 660 |
+
"""Conditional edge: Check if we've asked all 2 narrowing questions"""
|
| 661 |
+
questions_asked = state.get("narrowing_questions_asked", 0)
|
| 662 |
+
if questions_asked >= 2:
|
| 663 |
+
return "finalize"
|
| 664 |
+
return "ask_more"
|
| 665 |
+
|
| 666 |
+
|
| 667 |
+
|
| 668 |
+
|
| 669 |
+
def finalize_books(state: AgentState) -> AgentState:
|
| 670 |
+
"""Node: Use reasoning to select final 3 books based on vibe and preferences"""
|
| 671 |
+
print(f"[DEBUG AGENT] finalize_books node started")
|
| 672 |
+
print(f"[DEBUG AGENT] books_with_metadata count: {len(state.get('books_with_metadata', []))}")
|
| 673 |
+
from .prompts import get_book_finalizer_prompt
|
| 674 |
+
|
| 675 |
+
# Build detailed book summary with full descriptions - no truncation
|
| 676 |
+
books_summary_parts = []
|
| 677 |
+
for i, b in enumerate(state["books_with_metadata"]):
|
| 678 |
+
desc = b.get('description', 'No description available')
|
| 679 |
+
cats = ', '.join(b.get('categories', [])) if b.get('categories') else 'Uncategorized'
|
| 680 |
+
books_summary_parts.append(f"{i+1}. {b['title']} by {b['author']}\n Categories: {cats}\n Description: {desc}")
|
| 681 |
+
books_summary = "\n\n".join(books_summary_parts)
|
| 682 |
+
|
| 683 |
+
prefs_summary = json.dumps(state.get("user_preferences", {}), indent=2)
|
| 684 |
+
vibe_context = f"Feels like: {state['feels_like']}\nAesthetics: {', '.join(state['aesthetic_genre_keywords'])}\nMood: {', '.join(state['mood_atmosphere'])}\nThemes: {', '.join(state['core_themes'])}\nTropes: {', '.join(state['tropes'])}"
|
| 685 |
+
|
| 686 |
+
user_prompt = f"Vibe:\n{vibe_context}\n\nCandidate Books:\n{books_summary}\n\nUser Preferences (from Q&A):\n{prefs_summary}\n\nSelect the {NUM_FINAL_BOOKS} best matches (return only JSON array):"
|
| 687 |
+
|
| 688 |
+
messages = [
|
| 689 |
+
{"role": "system", "content": get_book_finalizer_prompt(NUM_FINAL_BOOKS)},
|
| 690 |
+
{"role": "user", "content": user_prompt}
|
| 691 |
+
]
|
| 692 |
+
|
| 693 |
+
print(f"[DEBUG AGENT] finalize_books user_prompt:\n{user_prompt}")
|
| 694 |
+
|
| 695 |
+
# Use reasoning model for book selection - this is a complex decision
|
| 696 |
+
# Increase max_tokens since we're sending full book descriptions
|
| 697 |
+
selection_response, reasoning = call_llm(messages, temperature=0.3, model=REASONING_MODEL, include_reasoning=True, max_tokens=4000)
|
| 698 |
+
|
| 699 |
+
# Log reasoning even if empty
|
| 700 |
+
state["reasoning"].append(f"🧠 REASONING (Book Selection):\n{reasoning or 'No reasoning provided'}")
|
| 701 |
+
|
| 702 |
+
# Parse the JSON response - check both content and reasoning for the array
|
| 703 |
+
try:
|
| 704 |
+
import re
|
| 705 |
+
# First try to find JSON array in the response content
|
| 706 |
+
json_match = re.search(r'\[([\d,\s]+)\]', selection_response)
|
| 707 |
+
|
| 708 |
+
# If not found in content, try to find it in reasoning (some models put answer there)
|
| 709 |
+
if not json_match and reasoning:
|
| 710 |
+
json_match = re.search(r'\[([\d,\s]+)\]', reasoning)
|
| 711 |
+
if json_match:
|
| 712 |
+
print(f"[DEBUG AGENT] Found JSON in reasoning instead of content")
|
| 713 |
+
|
| 714 |
+
if json_match:
|
| 715 |
+
indices = json.loads(json_match.group(0))
|
| 716 |
+
selected_books = [state["books_with_metadata"][i-1] for i in indices if 0 < i <= len(state["books_with_metadata"])][:NUM_FINAL_BOOKS]
|
| 717 |
+
else:
|
| 718 |
+
# Fallback to first 3 books
|
| 719 |
+
print(f"[DEBUG AGENT] No JSON array found, using first 3 books")
|
| 720 |
+
selected_books = state["books_with_metadata"][:NUM_FINAL_BOOKS]
|
| 721 |
+
except Exception as e:
|
| 722 |
+
state["reasoning"].append(f"❌ Failed to parse book selection: {e}. Using first 3 books.")
|
| 723 |
+
selected_books = state["books_with_metadata"][:NUM_FINAL_BOOKS]
|
| 724 |
+
|
| 725 |
+
state["final_books"] = selected_books
|
| 726 |
+
state["reasoning"].append(f"🧠 REASONING (Book Selection):\n{reasoning}\n\n→ Selected: {[b['title'] for b in selected_books]}")
|
| 727 |
+
|
| 728 |
+
return state
|
| 729 |
+
|
| 730 |
+
|
| 731 |
+
def generate_soundtrack(state: AgentState) -> AgentState:
|
| 732 |
+
"""Node: Generate ambient soundtrack using ElevenLabs Music API"""
|
| 733 |
+
print(f"[DEBUG AGENT] generate_soundtrack node started")
|
| 734 |
+
|
| 735 |
+
import requests
|
| 736 |
+
import tempfile
|
| 737 |
+
|
| 738 |
+
ELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY")
|
| 739 |
+
print(f"[DEBUG AGENT] ELEVENLABS_API_KEY present: {bool(ELEVENLABS_API_KEY)}")
|
| 740 |
+
|
| 741 |
+
if not ELEVENLABS_API_KEY:
|
| 742 |
+
print(f"[DEBUG AGENT] No ELEVENLABS_API_KEY - skipping")
|
| 743 |
+
state["reasoning"].append("⚠️ ELEVENLABS_API_KEY not set - skipping soundtrack generation")
|
| 744 |
+
state["soundtrack_url"] = ""
|
| 745 |
+
return state
|
| 746 |
+
|
| 747 |
+
try:
|
| 748 |
+
# Build vibe context for music prompt generation
|
| 749 |
+
vibe_context = {
|
| 750 |
+
"feels_like": state["feels_like"],
|
| 751 |
+
"mood_atmosphere": state["mood_atmosphere"],
|
| 752 |
+
"aesthetic_genre_keywords": state["aesthetic_genre_keywords"],
|
| 753 |
+
"core_themes": state["core_themes"],
|
| 754 |
+
"tropes": state["tropes"]
|
| 755 |
+
}
|
| 756 |
+
print(f"[DEBUG AGENT] vibe_context built: {list(vibe_context.keys())}")
|
| 757 |
+
|
| 758 |
+
# Use LLM to generate music prompt from vibe context
|
| 759 |
+
from .prompts import MUSIC_PROMPT_GENERATION
|
| 760 |
+
|
| 761 |
+
messages = [
|
| 762 |
+
{"role": "system", "content": MUSIC_PROMPT_GENERATION},
|
| 763 |
+
{"role": "user", "content": f"Generate a music prompt based on this vibe:\n{json.dumps(vibe_context, indent=2)}"}
|
| 764 |
+
]
|
| 765 |
+
|
| 766 |
+
print(f"[DEBUG AGENT] Calling LLM for music prompt...")
|
| 767 |
+
music_prompt, reasoning = call_llm(messages, temperature=0.7, model=FAST_MODEL, include_reasoning=True)
|
| 768 |
+
print(f"[DEBUG AGENT] Music prompt generated: {music_prompt[:100] if music_prompt else 'None'}...")
|
| 769 |
+
state["reasoning"].append(f"🎵 Music prompt: {music_prompt}")
|
| 770 |
+
|
| 771 |
+
# Call ElevenLabs Music API directly
|
| 772 |
+
print(f"[DEBUG AGENT] Calling ElevenLabs Music API...")
|
| 773 |
+
state["reasoning"].append(f"🎵 Calling ElevenLabs Music API...")
|
| 774 |
+
|
| 775 |
+
response = requests.post(
|
| 776 |
+
"https://api.elevenlabs.io/v1/music",
|
| 777 |
+
headers={
|
| 778 |
+
"xi-api-key": ELEVENLABS_API_KEY,
|
| 779 |
+
"Content-Type": "application/json"
|
| 780 |
+
},
|
| 781 |
+
json={
|
| 782 |
+
"prompt": music_prompt,
|
| 783 |
+
"music_length_ms": 90000, # 1:30 minute
|
| 784 |
+
"force_instrumental": True # No vocals, just ambient music
|
| 785 |
+
},
|
| 786 |
+
timeout=120 # Music generation can take a while
|
| 787 |
+
)
|
| 788 |
+
|
| 789 |
+
print(f"[DEBUG AGENT] ElevenLabs response status: {response.status_code}")
|
| 790 |
+
|
| 791 |
+
if response.status_code == 200:
|
| 792 |
+
print(f"[DEBUG AGENT] Success! Response size: {len(response.content)} bytes")
|
| 793 |
+
# Save the audio data to a temp file
|
| 794 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp3')
|
| 795 |
+
temp_file.write(response.content)
|
| 796 |
+
temp_file.close()
|
| 797 |
+
print(f"[DEBUG AGENT] Saved to temp file: {temp_file.name}")
|
| 798 |
+
|
| 799 |
+
state["soundtrack_url"] = temp_file.name
|
| 800 |
+
state["reasoning"].append(f"✅ Generated soundtrack successfully ({len(response.content)} bytes)")
|
| 801 |
+
else:
|
| 802 |
+
print(f"[DEBUG AGENT] ElevenLabs API error: {response.status_code} - {response.text[:500]}")
|
| 803 |
+
state["reasoning"].append(f"❌ ElevenLabs API error: {response.status_code} - {response.text[:200]}")
|
| 804 |
+
state["soundtrack_url"] = ""
|
| 805 |
+
|
| 806 |
+
except Exception as e:
|
| 807 |
+
import traceback
|
| 808 |
+
print(f"[DEBUG AGENT] Exception in generate_soundtrack: {e}")
|
| 809 |
+
traceback.print_exc()
|
| 810 |
+
state["reasoning"].append(f"❌ Failed to generate soundtrack: {e}")
|
| 811 |
+
state["soundtrack_url"] = ""
|
| 812 |
+
|
| 813 |
+
print(f"[DEBUG AGENT] generate_soundtrack finished, soundtrack_url: {state.get('soundtrack_url', 'not set')}")
|
| 814 |
+
return state
|
| 815 |
+
|
| 816 |
+
|
| 817 |
+
def present_final_results(state: AgentState) -> AgentState:
|
| 818 |
+
"""Node: Format and present final results to user"""
|
| 819 |
+
|
| 820 |
+
# Format books for display
|
| 821 |
+
books_text = "Here are your personalized book recommendations:\n\n"
|
| 822 |
+
for i, book in enumerate(state["final_books"], 1):
|
| 823 |
+
books_text += f"{i}. **{book['title']}** by {book['author']}\n"
|
| 824 |
+
|
| 825 |
+
state["messages"].append({
|
| 826 |
+
"role": "assistant",
|
| 827 |
+
"content": books_text + f"\n\nI'm also generating a soundtrack that matches your vibe! Scroll down for all the goodies ⬇️"
|
| 828 |
+
})
|
| 829 |
+
|
| 830 |
+
state["reasoning"].append("Presented final results to user")
|
| 831 |
+
|
| 832 |
+
return state
|
| 833 |
+
|
| 834 |
+
|
| 835 |
+
# ============================================================================
|
| 836 |
+
# GRAPH CONSTRUCTION
|
| 837 |
+
# ============================================================================
|
| 838 |
+
|
| 839 |
+
def create_agent_graph():
|
| 840 |
+
"""Create and compile the LangGraph workflow with interrupts for user input"""
|
| 841 |
+
from langgraph.checkpoint.memory import MemorySaver
|
| 842 |
+
|
| 843 |
+
# Initialize graph
|
| 844 |
+
workflow = StateGraph(AgentState)
|
| 845 |
+
|
| 846 |
+
# Add nodes
|
| 847 |
+
workflow.add_node("generate_initial_vibe", generate_initial_vibe)
|
| 848 |
+
workflow.add_node("refine_vibe", refine_vibe)
|
| 849 |
+
workflow.add_node("retrieve_books", retrieve_books)
|
| 850 |
+
workflow.add_node("fetch_metadata", fetch_book_metadata)
|
| 851 |
+
workflow.add_node("generate_q1", generate_question_1)
|
| 852 |
+
workflow.add_node("wait_a1", wait_for_answer_1)
|
| 853 |
+
workflow.add_node("generate_q2", generate_question_2)
|
| 854 |
+
workflow.add_node("wait_a2", wait_for_answer_2)
|
| 855 |
+
workflow.add_node("finalize_books", finalize_books)
|
| 856 |
+
workflow.add_node("generate_soundtrack", generate_soundtrack)
|
| 857 |
+
workflow.add_node("present_results", present_final_results)
|
| 858 |
+
|
| 859 |
+
# Set entry point
|
| 860 |
+
workflow.set_entry_point("generate_initial_vibe")
|
| 861 |
+
|
| 862 |
+
# After initial vibe, check if user is satisfied or wants refinement
|
| 863 |
+
workflow.add_conditional_edges(
|
| 864 |
+
"generate_initial_vibe",
|
| 865 |
+
check_vibe_satisfaction,
|
| 866 |
+
{
|
| 867 |
+
"refine": "refine_vibe",
|
| 868 |
+
"retrieve": "retrieve_books"
|
| 869 |
+
}
|
| 870 |
+
)
|
| 871 |
+
|
| 872 |
+
# After refinement, check again if user is satisfied
|
| 873 |
+
workflow.add_conditional_edges(
|
| 874 |
+
"refine_vibe",
|
| 875 |
+
check_vibe_satisfaction,
|
| 876 |
+
{
|
| 877 |
+
"refine": "refine_vibe",
|
| 878 |
+
"retrieve": "retrieve_books"
|
| 879 |
+
}
|
| 880 |
+
)
|
| 881 |
+
|
| 882 |
+
# Sequential: retrieve -> fetch -> generate Q1 -> wait A1 -> generate Q2 -> wait A2 -> finalize
|
| 883 |
+
workflow.add_edge("retrieve_books", "fetch_metadata")
|
| 884 |
+
workflow.add_edge("fetch_metadata", "generate_q1")
|
| 885 |
+
workflow.add_edge("generate_q1", "wait_a1")
|
| 886 |
+
workflow.add_edge("wait_a1", "generate_q2")
|
| 887 |
+
workflow.add_edge("generate_q2", "wait_a2")
|
| 888 |
+
workflow.add_edge("wait_a2", "finalize_books")
|
| 889 |
+
|
| 890 |
+
# Sequential: finalize -> soundtrack -> present
|
| 891 |
+
workflow.add_edge("finalize_books", "generate_soundtrack")
|
| 892 |
+
workflow.add_edge("generate_soundtrack", "present_results")
|
| 893 |
+
workflow.add_edge("present_results", END)
|
| 894 |
+
|
| 895 |
+
# Compile with checkpointer for state persistence
|
| 896 |
+
memory = MemorySaver()
|
| 897 |
+
return workflow.compile(checkpointer=memory)
|
| 898 |
+
|
| 899 |
+
|
| 900 |
+
# ============================================================================
|
| 901 |
+
# MAIN INTERFACE
|
| 902 |
+
# ============================================================================
|
| 903 |
+
|
| 904 |
+
# Global graph instance with persistent checkpointer
|
| 905 |
+
_GRAPH_INSTANCE = None
|
| 906 |
+
|
| 907 |
+
def get_graph():
|
| 908 |
+
"""Get or create the compiled graph with checkpointer"""
|
| 909 |
+
global _GRAPH_INSTANCE
|
| 910 |
+
if _GRAPH_INSTANCE is None:
|
| 911 |
+
print(f"[DEBUG AGENT] Creating NEW graph instance!")
|
| 912 |
+
_GRAPH_INSTANCE = create_agent_graph()
|
| 913 |
+
else:
|
| 914 |
+
print(f"[DEBUG AGENT] Reusing existing graph instance")
|
| 915 |
+
return _GRAPH_INSTANCE
|
| 916 |
+
|
| 917 |
+
def reset_agent():
|
| 918 |
+
"""Reset the agent by clearing the graph instance"""
|
| 919 |
+
global _GRAPH_INSTANCE
|
| 920 |
+
_GRAPH_INSTANCE = None
|
| 921 |
+
|
| 922 |
+
def run_agent(images: List[str], user_message: str = None, thread_id: str = "main"):
|
| 923 |
+
"""
|
| 924 |
+
Main interface to run the agent with interrupt-based human-in-the-loop
|
| 925 |
+
|
| 926 |
+
Args:
|
| 927 |
+
images: List of image URLs/base64 for initial upload
|
| 928 |
+
user_message: User's message (for resuming after interrupt)
|
| 929 |
+
thread_id: Unique identifier for the user session (required for multi-user support)
|
| 930 |
+
|
| 931 |
+
Returns:
|
| 932 |
+
Updated state with agent's response
|
| 933 |
+
"""
|
| 934 |
+
from langgraph.types import Command
|
| 935 |
+
|
| 936 |
+
graph = get_graph()
|
| 937 |
+
thread_config = {"configurable": {"thread_id": thread_id}}
|
| 938 |
+
|
| 939 |
+
# Initialize state if new conversation (images provided)
|
| 940 |
+
if images and len(images) > 0:
|
| 941 |
+
initial_state = AgentState(
|
| 942 |
+
images=images,
|
| 943 |
+
messages=[],
|
| 944 |
+
aesthetic_genre_keywords=[],
|
| 945 |
+
mood_atmosphere=[],
|
| 946 |
+
core_themes=[],
|
| 947 |
+
tropes=[],
|
| 948 |
+
feels_like="",
|
| 949 |
+
vibe_refinement_count=0,
|
| 950 |
+
retrieved_books=[],
|
| 951 |
+
books_with_metadata=[],
|
| 952 |
+
q1_question="",
|
| 953 |
+
q2_question="",
|
| 954 |
+
user_preferences={},
|
| 955 |
+
final_books=[],
|
| 956 |
+
soundtrack_url="",
|
| 957 |
+
reasoning=[]
|
| 958 |
+
)
|
| 959 |
+
# Start the graph - it will stop at first interrupt()
|
| 960 |
+
result = graph.invoke(initial_state, thread_config)
|
| 961 |
+
return result
|
| 962 |
+
|
| 963 |
+
# Resume with user's message
|
| 964 |
+
if user_message:
|
| 965 |
+
# Check current state before resuming
|
| 966 |
+
current_state = graph.get_state(thread_config)
|
| 967 |
+
print(f"[DEBUG AGENT] State BEFORE resume:")
|
| 968 |
+
print(f"[DEBUG AGENT] messages count: {len(current_state.values.get('messages', []))}")
|
| 969 |
+
for i, m in enumerate(current_state.values.get('messages', [])):
|
| 970 |
+
print(f"[DEBUG AGENT] msg[{i}]: {m.get('role')} - {m.get('content', '')[:60]}...")
|
| 971 |
+
print(f"[DEBUG AGENT] q1_question: '{current_state.values.get('q1_question', '')[:50] if current_state.values.get('q1_question') else 'EMPTY'}'")
|
| 972 |
+
|
| 973 |
+
# Resume from the last interrupt; the value passed to Command(resume=...)
|
| 974 |
+
# is what the corresponding interrupt(...) call will return inside the node.
|
| 975 |
+
print(f"[DEBUG AGENT] Resuming graph with user_message: {user_message[:50]}...")
|
| 976 |
+
result = graph.invoke(Command(resume=user_message), thread_config)
|
| 977 |
+
print(f"[DEBUG AGENT] graph.invoke returned: {type(result)}, keys: {list(result.keys()) if hasattr(result, 'keys') else 'N/A'}")
|
| 978 |
+
print(f"[DEBUG AGENT] result has {len(result.get('messages', []))} messages")
|
| 979 |
+
|
| 980 |
+
# Remove __interrupt__ key if present before returning
|
| 981 |
+
if "__interrupt__" in result:
|
| 982 |
+
result = {k: v for k, v in result.items() if k != "__interrupt__"}
|
| 983 |
+
return result
|
| 984 |
+
|
| 985 |
+
return None
|
agent/prompts.py
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Centralized Prompts Configuration
|
| 3 |
+
Store all system prompts and templates used across the vibe-reader application
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
# ============================================================================
|
| 7 |
+
# VIBE EXTRACTION PROMPTS
|
| 8 |
+
# ============================================================================
|
| 9 |
+
|
| 10 |
+
VIBE_EXTRACTION = """You are an expert at capturing the emotional essence and atmosphere of visual content. Your task is to analyze one or more images and translate their collective 'vibe' into a detailed description that would help someone find fiction books with a similar feeling and atmosphere.
|
| 11 |
+
|
| 12 |
+
**Context:** This analysis will be used to recommend books based on visual mood boards, similar to how users on r/Booksthatfeellikethis share images to convey the type of story atmosphere they're seeking.
|
| 13 |
+
|
| 14 |
+
**Key Instructions:**
|
| 15 |
+
- Focus on the emotional atmosphere and feelings the images evoke, NOT literal descriptions of what's shown
|
| 16 |
+
- Think like a reader who wants to be immersed in a world that feels like these images
|
| 17 |
+
- When analyzing multiple images, treat them as a cohesive mood board that defines one unified vibe
|
| 18 |
+
- Consider what it would feel like to live in or experience a story set in this atmosphere
|
| 19 |
+
- Use natural, conversational language - be evocative but avoid overly poetic or academic terminology
|
| 20 |
+
- If images seem to have conflicting vibes, find the common emotional thread that unifies them
|
| 21 |
+
- Only reference specific time periods or cultures if the images clearly and obviously point to them
|
| 22 |
+
- Avoid describing graphic violence even if present in the images
|
| 23 |
+
|
| 24 |
+
**Target Output:** Your description should help match these vibes to fiction books across all genres.
|
| 25 |
+
|
| 26 |
+
**Required Format:**
|
| 27 |
+
|
| 28 |
+
You must output a valid JSON object with the following structure:
|
| 29 |
+
|
| 30 |
+
{
|
| 31 |
+
"aesthetic_genre_keywords": ["keyword1", "keyword2", "keyword3"],
|
| 32 |
+
"mood_atmosphere": ["mood1", "mood2", "mood3"],
|
| 33 |
+
"core_themes": ["theme1", "theme2", "theme3"],
|
| 34 |
+
"tropes": ["trope1", "trope2", "trope3"],
|
| 35 |
+
"feels_like": "4-5 sentences that synthesize the overall emotional essence..."
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
Guidelines for each field:
|
| 39 |
+
- **aesthetic_genre_keywords**: Style and genre descriptors like Gothic, Dark Academia, Cyberpunk, Cottagecore, Film Noir, Solarpunk, etc.
|
| 40 |
+
- **mood_atmosphere**: Emotional tone - words like Melancholic, Nostalgic, Tense, Cozy, Dreamlike, Whimsical, Foreboding, etc.
|
| 41 |
+
- **core_themes**: Broad underlying themes such as Isolation, Mystery, Self-discovery, Loss, Wonder, Coming-of-age, Redemption, Power and corruption, etc.
|
| 42 |
+
- **tropes**: Specific narrative tropes and patterns like Enemies-to-lovers, Found family, Chosen one, Unreliable narrator, Slow burn romance, Morally gray protagonist, etc.
|
| 43 |
+
- **feels_like**: Write 4-5 sentences that synthesize the overall emotional essence. Focus 60% on potential story atmosphere and subtle plot elements, 40% on pure mood. Describe what it would feel like to be immersed in a book with this atmosphere.
|
| 44 |
+
|
| 45 |
+
IMPORTANT: Return ONLY the JSON object. Do not include markdown code blocks, backticks, or any text outside the JSON.
|
| 46 |
+
"""
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
# ============================================================================
|
| 50 |
+
# VIBE REFINEMENT PROMPTS
|
| 51 |
+
# ============================================================================
|
| 52 |
+
|
| 53 |
+
VIBE_REFINEMENT = """You are helping refine a vibe description based on user feedback.
|
| 54 |
+
|
| 55 |
+
IMPORTANT:
|
| 56 |
+
- If the user approves/accepts the vibe (says "yes", "perfect", "good", "love it", etc.), return the EXACT same description unchanged.
|
| 57 |
+
- Only modify the description if the user explicitly asks for changes or suggests specific adjustments.
|
| 58 |
+
|
| 59 |
+
When changes are requested, adjust the description to incorporate their suggestions while maintaining a natural, evocative tone."""
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
# ============================================================================
|
| 63 |
+
# BOOK SELECTION & NARROWING PROMPTS
|
| 64 |
+
# ============================================================================
|
| 65 |
+
|
| 66 |
+
NARROWING_QUESTION_GENERATOR = """You are helping narrow down book recommendations by finding the KEY DIFFERENCE between the candidate books.
|
| 67 |
+
|
| 68 |
+
YOUR PROCESS:
|
| 69 |
+
1. READ the book descriptions and categories carefully
|
| 70 |
+
2. IDENTIFY a concrete differentiating factor that actually appears in the books (not abstract vibes)
|
| 71 |
+
3. FORMULATE a question where Option A matches some books and Option B matches others
|
| 72 |
+
|
| 73 |
+
GROUNDING RULES:
|
| 74 |
+
- Your question MUST be based on ACTUAL content from the book descriptions/categories provided
|
| 75 |
+
- Look for concrete differences: time period, setting type, protagonist type, plot focus, tone, narrative style
|
| 76 |
+
- Do NOT invent abstract aesthetic questions that aren't grounded in the books
|
| 77 |
+
- NEVER mention specific book titles or authors
|
| 78 |
+
|
| 79 |
+
FORMAT RULES:
|
| 80 |
+
- Use EXACTLY this format: "Do you prefer **A)** [option] or **B)** [option]?"
|
| 81 |
+
- Keep options SHORT (under 10 words each)
|
| 82 |
+
- The user should be able to answer with just "A" or "B"
|
| 83 |
+
|
| 84 |
+
If previous preferences exist, your question must be COMPATIBLE with what the user already chose.
|
| 85 |
+
|
| 86 |
+
Provide ONLY the question, no explanation."""
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
BOOK_FINALIZER = """You are selecting the {num_books} best books from a list based on vibe and user preferences.
|
| 90 |
+
|
| 91 |
+
You will receive:
|
| 92 |
+
1. The vibe profile (aesthetics, mood, themes, tropes, feels_like)
|
| 93 |
+
2. A list of candidate books with descriptions and categories
|
| 94 |
+
3. User preferences from Q&A (question + answer pairs)
|
| 95 |
+
|
| 96 |
+
Your task:
|
| 97 |
+
- Analyze each book's description and categories against the vibe
|
| 98 |
+
- Apply the user's stated preferences as HARD FILTERS — if they said they prefer X over Y, prioritize books matching X
|
| 99 |
+
- Select the {num_books} books that best match BOTH the vibe AND the user's preferences
|
| 100 |
+
|
| 101 |
+
Respond with ONLY a JSON array of book indices (1-indexed), like: [3, 7, 12]"""
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
# ============================================================================
|
| 105 |
+
# MUSIC GENERATION PROMPTS
|
| 106 |
+
# ============================================================================
|
| 107 |
+
|
| 108 |
+
MUSIC_PROMPT_GENERATION = """You are creating a music generation prompt for ElevenLabs based on a book vibe analysis.
|
| 109 |
+
Your task is to translate the literary atmosphere and emotional elements into a descriptive music prompt that will generate an appropriate instrumental soundtrack.
|
| 110 |
+
|
| 111 |
+
Key Instructions:
|
| 112 |
+
- Create instrumental ambient music that captures the emotional essence of the vibe
|
| 113 |
+
- Focus on atmosphere, mood, and emotional tone - NOT specific story elements
|
| 114 |
+
- Use descriptive musical terms (tempo, instrumentation, style, mood)
|
| 115 |
+
- Consider how the music would feel as background for reading or immersing in this type of story
|
| 116 |
+
- Aim for 30-60 second ambient pieces that set a mood
|
| 117 |
+
- Avoid mentioning specific characters, plots, or narrative events
|
| 118 |
+
- DO NOT reference specific artists or copyrighted works
|
| 119 |
+
- Keep prompts concise but evocative (50-150 words)
|
| 120 |
+
|
| 121 |
+
Musical Elements to Consider:
|
| 122 |
+
- Tempo: slow, moderate, energetic
|
| 123 |
+
- Instrumentation: piano, strings, electronic, ambient textures, orchestral
|
| 124 |
+
- Style: ambient, classical, electronic, folk, cinematic
|
| 125 |
+
- Mood: mysterious, peaceful, tense, whimsical, melancholic, etc.
|
| 126 |
+
|
| 127 |
+
Output: A single descriptive prompt for ElevenLabs music generation."""
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
# ============================================================================
|
| 131 |
+
# USER SATISFACTION PROMPTS
|
| 132 |
+
# ============================================================================
|
| 133 |
+
|
| 134 |
+
VIBE_SATISFACTION_CHECKER = """Does the user want to change the vibe description? Reply with ONLY 'satisfied' or 'not_satisfied'.
|
| 135 |
+
|
| 136 |
+
'satisfied' responses include: yes, yeah, perfect, good, love it, great, ok, okay, sure, sounds good, that works, etc.
|
| 137 |
+
'not_satisfied' responses include: no, change it, more X, less Y, add Z, I want, make it, etc.
|
| 138 |
+
|
| 139 |
+
Default to 'satisfied' unless the user EXPLICITLY requests changes."""
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
# ============================================================================
|
| 143 |
+
# HELPER FUNCTIONS
|
| 144 |
+
# ============================================================================
|
| 145 |
+
|
| 146 |
+
def get_book_finalizer_prompt(num_books: int = 3) -> str:
|
| 147 |
+
"""
|
| 148 |
+
Get the book finalizer prompt with the specified number of books
|
| 149 |
+
|
| 150 |
+
Args:
|
| 151 |
+
num_books: Number of books to select (default: 3)
|
| 152 |
+
|
| 153 |
+
Returns:
|
| 154 |
+
The formatted system prompt string
|
| 155 |
+
"""
|
| 156 |
+
return BOOK_FINALIZER.format(num_books=num_books)
|
agent/utils.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Utility functions for the vibe-reader application
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import json
|
| 6 |
+
import re
|
| 7 |
+
from typing import Dict, Any, Optional
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def parse_json_response(response: str) -> Optional[Dict[str, Any]]:
|
| 11 |
+
"""
|
| 12 |
+
Parse JSON from LLM response, handling various formats
|
| 13 |
+
|
| 14 |
+
Args:
|
| 15 |
+
response: Raw LLM response that may contain JSON
|
| 16 |
+
|
| 17 |
+
Returns:
|
| 18 |
+
Parsed JSON dict, or None if parsing fails
|
| 19 |
+
"""
|
| 20 |
+
# Remove markdown code blocks if present
|
| 21 |
+
cleaned = re.sub(r'```json\s*|\s*```', '', response, flags=re.IGNORECASE)
|
| 22 |
+
cleaned = cleaned.strip()
|
| 23 |
+
|
| 24 |
+
# Try to find JSON object in the response
|
| 25 |
+
json_match = re.search(r'\{.*\}', cleaned, re.DOTALL)
|
| 26 |
+
if json_match:
|
| 27 |
+
try:
|
| 28 |
+
return json.loads(json_match.group(0))
|
| 29 |
+
except json.JSONDecodeError as e:
|
| 30 |
+
print(f"JSON parsing error: {e}")
|
| 31 |
+
return None
|
| 32 |
+
|
| 33 |
+
return None
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def extract_vibe_components(vibe_json: Dict[str, Any]) -> Dict[str, Any]:
|
| 37 |
+
"""
|
| 38 |
+
Extract and validate vibe components from parsed JSON
|
| 39 |
+
|
| 40 |
+
Args:
|
| 41 |
+
vibe_json: Parsed JSON from vibe extraction
|
| 42 |
+
|
| 43 |
+
Returns:
|
| 44 |
+
Dictionary with validated vibe components
|
| 45 |
+
"""
|
| 46 |
+
return {
|
| 47 |
+
"aesthetic_genre_keywords": vibe_json.get("aesthetic_genre_keywords", []),
|
| 48 |
+
"mood_atmosphere": vibe_json.get("mood_atmosphere", []),
|
| 49 |
+
"core_themes": vibe_json.get("core_themes", []),
|
| 50 |
+
"tropes": vibe_json.get("tropes", []),
|
| 51 |
+
"feels_like": vibe_json.get("feels_like", "")
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def strip_thinking_tags(text: str) -> str:
|
| 56 |
+
"""
|
| 57 |
+
Remove <think>...</think> tags and any reasoning content from text
|
| 58 |
+
Qwen3 uses standard XML format: <think>...</think>
|
| 59 |
+
|
| 60 |
+
Args:
|
| 61 |
+
text: Text that may contain thinking tags
|
| 62 |
+
|
| 63 |
+
Returns:
|
| 64 |
+
Clean text without thinking tags
|
| 65 |
+
"""
|
| 66 |
+
# Remove <think>...</think> blocks
|
| 67 |
+
cleaned = re.sub(r'<think>.*?</think>', '', text, flags=re.DOTALL | re.IGNORECASE)
|
| 68 |
+
# Remove any leftover tags
|
| 69 |
+
cleaned = re.sub(r'</?think>', '', cleaned, flags=re.IGNORECASE)
|
| 70 |
+
return cleaned.strip()
|
app.py
CHANGED
|
@@ -5,7 +5,7 @@ import os
|
|
| 5 |
import sys
|
| 6 |
import traceback
|
| 7 |
|
| 8 |
-
from
|
| 9 |
|
| 10 |
|
| 11 |
|
|
@@ -299,4 +299,5 @@ with gr.Blocks() as demo:
|
|
| 299 |
)
|
| 300 |
|
| 301 |
if __name__ == "__main__":
|
| 302 |
-
|
|
|
|
|
|
| 5 |
import sys
|
| 6 |
import traceback
|
| 7 |
|
| 8 |
+
from agent.agent import run_agent
|
| 9 |
|
| 10 |
|
| 11 |
|
|
|
|
| 299 |
)
|
| 300 |
|
| 301 |
if __name__ == "__main__":
|
| 302 |
+
# Note: css_paths removed as custom.css location may vary
|
| 303 |
+
demo.queue().launch(theme=gr.themes.Monochrome())
|
assets/custom.css
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
@import url('https://fonts.googleapis.com/css2?family=Pixelify+Sans:wght@400;500;600;700&display=swap');
|
| 2 |
+
|
| 3 |
+
body {
|
| 4 |
+
background-image: url('https://64.media.tumblr.com/677c7a2824b4c515b4c96b0cccb44740/tumblr_ney3botpbL1snc5kxo2_250.png');
|
| 5 |
+
background-repeat: repeat;
|
| 6 |
+
background-size: auto;
|
| 7 |
+
}
|
| 8 |
+
|
| 9 |
+
.gradio-container {
|
| 10 |
+
background-image: url('https://64.media.tumblr.com/677c7a2824b4c515b4c96b0cccb44740/tumblr_ney3botpbL1snc5kxo2_250.png');
|
| 11 |
+
background-repeat: repeat;
|
| 12 |
+
background-size: auto;
|
| 13 |
+
}
|
| 14 |
+
|
| 15 |
+
#main-title {
|
| 16 |
+
text-align: center;
|
| 17 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 18 |
+
-webkit-background-clip: text;
|
| 19 |
+
-webkit-text-fill-color: transparent;
|
| 20 |
+
background-clip: text;
|
| 21 |
+
font-weight: bold;
|
| 22 |
+
margin-bottom: 8px;
|
| 23 |
+
font-family: 'Pixelify Sans', sans-serif;
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
#subtitle {
|
| 27 |
+
text-align: center;
|
| 28 |
+
color: #1b0925;
|
| 29 |
+
margin-bottom: 30px;
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
.vibe-container {
|
| 33 |
+
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
|
| 34 |
+
border-radius: 15px;
|
| 35 |
+
padding: 20px;
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
.recommendation-section {
|
| 39 |
+
margin-top: 30px;
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
#status-display textarea {
|
| 43 |
+
font-size: 1.4em !important;
|
| 44 |
+
font-weight: 500;
|
| 45 |
+
background: transparent !important;
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
/* Chatbot message text */
|
| 49 |
+
.chatbot .message-wrap {
|
| 50 |
+
font-size: 1.3em !important;
|
| 51 |
+
}
|
| 52 |
+
|
| 53 |
+
footer {
|
| 54 |
+
text-align: center;
|
| 55 |
+
margin-top: 50px;
|
| 56 |
+
padding: 20px;
|
| 57 |
+
color: #999;
|
| 58 |
+
font-size: 0.9em;
|
| 59 |
+
}
|