File size: 4,215 Bytes
9346f1c
4103566
9346f1c
4596a70
8b1f7a0
 
01ea22b
b98f07f
 
 
 
 
d8eb71c
b98f07f
 
54eae7e
3b3db42
 
 
 
 
 
 
 
3d8dbe8
 
3b3db42
d8eb71c
3b3db42
d8eb71c
b98f07f
2a73469
10f9b3c
30dede7
fabb601
d8eb71c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ac3bdc
d8eb71c
 
 
 
 
 
 
 
 
 
 
614ee1f
4103566
 
 
 
 
 
 
 
 
 
 
d8eb71c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4103566
 
 
beaaa9e
f6475aa
01233b7
 
58733e4
d4ccaf3
10f9b3c
8daa060
d8eb71c
4103566
7e8ac0e
65af9f4
d4ccaf3
e7226cc
d8eb71c
 
8daa060
f7d1b51
d8eb71c
f7d1b51
 
 
71f25ab
f7d1b51
818f024
 
f7d1b51
10f9b3c
511c060
10f9b3c
c438de2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    SUBMIT_INTRODUCTION,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision
)
from src.envs import API, REPO_ID, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
# from src.submission.submit import add_new_eval


def restart_space():
    API.restart_space(repo_id=REPO_ID)

# ### Space initialisation
# try:
#     print(EVAL_REQUESTS_PATH)
#     snapshot_download(
#         repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
#     )
# except Exception:
#     restart_space()
# try:
#     print(EVAL_RESULTS_PATH)
#     snapshot_download(
#         repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
#     )
# except Exception:
#     restart_space()

def get_df():
    df = pd.read_json("results.json")
    df = df.round(3)
    df.sort_values(by="Overall", ascending=False, inplace=True)
    return df


LEADERBOARD_DF = get_df()

# (
#     finished_eval_queue_df,
#     running_eval_queue_df,
#     pending_eval_queue_df,
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

def init_leaderboard(dataframe):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn)],
        select_columns=SelectColumns(
            default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
            cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
            label="Select Columns to Display:",
        ),
        search_columns=[AutoEvalColumn.model.name],
        # hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
        # filter_columns=[
        #     ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
        #     ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
        #     ColumnFilter(
        #         AutoEvalColumn.params.name,
        #         type="slider",
        #         min=0.01,
        #         max=150,
        #         label="Select the number of parameters (B)",
        #     ),
        #     ColumnFilter(
        #         AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
        #     ),
        # ],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("๐Ÿ… MMTU", elem_id="llm-benchmark-tab-table", id=0):
            leaderboard = init_leaderboard(LEADERBOARD_DF)

        with gr.TabItem("๐Ÿ“ About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("๐Ÿš€ Submit here!", elem_id="llm-benchmark-tab-table", id=3):
            gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")

    with gr.Row():
        with gr.Accordion("๐Ÿ“™ Citation", open=True):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()