Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -33,9 +33,14 @@ from config import config
|
|
| 33 |
import torch
|
| 34 |
import commons
|
| 35 |
from text import cleaned_text_to_sequence, get_bert
|
|
|
|
|
|
|
|
|
|
| 36 |
from text.cleaner import clean_text
|
| 37 |
import utils
|
| 38 |
|
|
|
|
|
|
|
| 39 |
from models import SynthesizerTrn
|
| 40 |
from text.symbols import symbols
|
| 41 |
import sys
|
|
@@ -66,6 +71,8 @@ webBase = {
|
|
| 66 |
languages = [ "Auto", "ZH", "JP"]
|
| 67 |
modelPaths = []
|
| 68 |
modes = ['pyopenjtalk-V2.3']
|
|
|
|
|
|
|
| 69 |
sentence_modes = ['sentence','paragraph']
|
| 70 |
|
| 71 |
net_g = None
|
|
@@ -97,317 +104,35 @@ BandList = {
|
|
| 97 |
"西克菲尔特音乐学院":["晶","未知留","八千代","栞","美帆"]
|
| 98 |
}
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
for
|
| 118 |
-
if
|
| 119 |
-
#
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
signString = hs.hexdigest()
|
| 125 |
-
if from_Language == "":
|
| 126 |
-
from_Language = "auto"
|
| 127 |
-
headers = {"Content-Type": "application/x-www-form-urlencoded"}
|
| 128 |
-
payload = {
|
| 129 |
-
"q": t,
|
| 130 |
-
"from": from_Language,
|
| 131 |
-
"to": to_Language,
|
| 132 |
-
"appid": appid,
|
| 133 |
-
"salt": salt,
|
| 134 |
-
"sign": signString,
|
| 135 |
-
}
|
| 136 |
-
# 发送请求
|
| 137 |
-
try:
|
| 138 |
-
response = requests.post(
|
| 139 |
-
url=url, data=payload, headers=headers, timeout=3
|
| 140 |
-
)
|
| 141 |
-
response = response.json()
|
| 142 |
-
if "trans_result" in response.keys():
|
| 143 |
-
result = response["trans_result"][0]
|
| 144 |
-
if "dst" in result.keys():
|
| 145 |
-
dst = result["dst"]
|
| 146 |
-
outTexts.append(dst)
|
| 147 |
-
except Exception:
|
| 148 |
-
return Sentence
|
| 149 |
-
else:
|
| 150 |
-
outTexts.append(t)
|
| 151 |
-
return "\n".join(outTexts)
|
| 152 |
-
|
| 153 |
-
#文本清洗工具
|
| 154 |
-
def is_japanese(string):
|
| 155 |
-
for ch in string:
|
| 156 |
-
if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
|
| 157 |
-
return True
|
| 158 |
-
return False
|
| 159 |
-
|
| 160 |
-
def is_chinese(string):
|
| 161 |
-
for ch in string:
|
| 162 |
-
if '\u4e00' <= ch <= '\u9fff':
|
| 163 |
-
return True
|
| 164 |
-
return False
|
| 165 |
-
|
| 166 |
-
def is_single_language(sentence):
|
| 167 |
-
# 检查句子是否为单一语言
|
| 168 |
-
contains_chinese = re.search(r'[\u4e00-\u9fff]', sentence) is not None
|
| 169 |
-
contains_japanese = re.search(r'[\u3040-\u30ff\u31f0-\u31ff]', sentence) is not None
|
| 170 |
-
contains_english = re.search(r'[a-zA-Z]', sentence) is not None
|
| 171 |
-
language_count = sum([contains_chinese, contains_japanese, contains_english])
|
| 172 |
-
return language_count == 1
|
| 173 |
-
|
| 174 |
-
def merge_scattered_parts(sentences):
|
| 175 |
-
"""合并零散的部分到相邻的句子中,并确保单一语言性"""
|
| 176 |
-
merged_sentences = []
|
| 177 |
-
buffer_sentence = ""
|
| 178 |
-
|
| 179 |
-
for sentence in sentences:
|
| 180 |
-
# 检查是否是单一语言或者太短(可能是标点或单个词)
|
| 181 |
-
if is_single_language(sentence) and len(sentence) > 1:
|
| 182 |
-
# 如果缓冲区有内容,先将缓冲区的内容添加到列表
|
| 183 |
-
if buffer_sentence:
|
| 184 |
-
merged_sentences.append(buffer_sentence)
|
| 185 |
-
buffer_sentence = ""
|
| 186 |
-
merged_sentences.append(sentence)
|
| 187 |
-
else:
|
| 188 |
-
# 如果是零散的部分,将其添加到缓冲区
|
| 189 |
-
buffer_sentence += sentence
|
| 190 |
-
|
| 191 |
-
# 确保最后的缓冲区内容被添加
|
| 192 |
-
if buffer_sentence:
|
| 193 |
-
merged_sentences.append(buffer_sentence)
|
| 194 |
-
|
| 195 |
-
return merged_sentences
|
| 196 |
-
|
| 197 |
-
def is_only_punctuation(s):
|
| 198 |
-
"""检查字符串是否只包含标点符号"""
|
| 199 |
-
# 此处列出中文、日文、英文常见标点符号
|
| 200 |
-
punctuation_pattern = re.compile(r'^[\s。*;,:“”()、!?《》\u3000\.,;:"\'?!()]+$')
|
| 201 |
-
return punctuation_pattern.match(s) is not None
|
| 202 |
-
|
| 203 |
-
def split_mixed_language(sentence):
|
| 204 |
-
# 分割混合语言句子
|
| 205 |
-
# 逐字符检查,分割不同语言部分
|
| 206 |
-
sub_sentences = []
|
| 207 |
-
current_language = None
|
| 208 |
-
current_part = ""
|
| 209 |
-
|
| 210 |
-
for char in sentence:
|
| 211 |
-
if re.match(r'[\u4e00-\u9fff]', char): # Chinese character
|
| 212 |
-
if current_language != 'chinese':
|
| 213 |
-
if current_part:
|
| 214 |
-
sub_sentences.append(current_part)
|
| 215 |
-
current_part = char
|
| 216 |
-
current_language = 'chinese'
|
| 217 |
-
else:
|
| 218 |
-
current_part += char
|
| 219 |
-
elif re.match(r'[\u3040-\u30ff\u31f0-\u31ff]', char): # Japanese character
|
| 220 |
-
if current_language != 'japanese':
|
| 221 |
-
if current_part:
|
| 222 |
-
sub_sentences.append(current_part)
|
| 223 |
-
current_part = char
|
| 224 |
-
current_language = 'japanese'
|
| 225 |
-
else:
|
| 226 |
-
current_part += char
|
| 227 |
-
elif re.match(r'[a-zA-Z]', char): # English character
|
| 228 |
-
if current_language != 'english':
|
| 229 |
-
if current_part:
|
| 230 |
-
sub_sentences.append(current_part)
|
| 231 |
-
current_part = char
|
| 232 |
-
current_language = 'english'
|
| 233 |
-
else:
|
| 234 |
-
current_part += char
|
| 235 |
else:
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
if current_part:
|
| 239 |
-
sub_sentences.append(current_part)
|
| 240 |
-
|
| 241 |
-
return sub_sentences
|
| 242 |
-
|
| 243 |
-
def replace_quotes(text):
|
| 244 |
-
# 替换中文、日文引号为英文引号
|
| 245 |
-
text = re.sub(r'[“”‘’『』「」()()]', '"', text)
|
| 246 |
-
return text
|
| 247 |
-
|
| 248 |
-
def remove_numeric_annotations(text):
|
| 249 |
-
# 定义用于匹配数字注释的正则表达式
|
| 250 |
-
# 包括 “”、【】和〔〕包裹的数字
|
| 251 |
-
pattern = r'“\d+”|【\d+】|〔\d+〕'
|
| 252 |
-
# 使用正则表达式替换掉这些注释
|
| 253 |
-
cleaned_text = re.sub(pattern, '', text)
|
| 254 |
-
return cleaned_text
|
| 255 |
-
|
| 256 |
-
def merge_adjacent_japanese(sentences):
|
| 257 |
-
"""合并相邻且都只包含日语的句子"""
|
| 258 |
-
merged_sentences = []
|
| 259 |
-
i = 0
|
| 260 |
-
while i < len(sentences):
|
| 261 |
-
current_sentence = sentences[i]
|
| 262 |
-
if i + 1 < len(sentences) and is_japanese(current_sentence) and is_japanese(sentences[i + 1]):
|
| 263 |
-
# 当前句子和下一句都是日语,合并它们
|
| 264 |
-
while i + 1 < len(sentences) and is_japanese(sentences[i + 1]):
|
| 265 |
-
current_sentence += sentences[i + 1]
|
| 266 |
-
i += 1
|
| 267 |
-
merged_sentences.append(current_sentence)
|
| 268 |
-
i += 1
|
| 269 |
-
return merged_sentences
|
| 270 |
-
|
| 271 |
-
def extrac(text):
|
| 272 |
-
text = replace_quotes(remove_numeric_annotations(text)) # 替换引号
|
| 273 |
-
text = re.sub("<[^>]*>", "", text) # 移除 HTML 标签
|
| 274 |
-
# 使用换行符和标点符号进行初步分割
|
| 275 |
-
preliminary_sentences = re.split(r'([\n。;!?\.\?!])', text)
|
| 276 |
-
final_sentences = []
|
| 277 |
-
|
| 278 |
-
preliminary_sentences = re.split(r'([\n。;!?\.\?!])', text)
|
| 279 |
-
|
| 280 |
-
for piece in preliminary_sentences:
|
| 281 |
-
if is_single_language(piece):
|
| 282 |
-
final_sentences.append(piece)
|
| 283 |
-
else:
|
| 284 |
-
sub_sentences = split_mixed_language(piece)
|
| 285 |
-
final_sentences.extend(sub_sentences)
|
| 286 |
-
|
| 287 |
-
# 处理长句子,使用jieba进行分词
|
| 288 |
-
split_sentences = []
|
| 289 |
-
for sentence in final_sentences:
|
| 290 |
-
split_sentences.extend(split_long_sentences(sentence))
|
| 291 |
-
|
| 292 |
-
# 合并相邻的日语句子
|
| 293 |
-
merged_japanese_sentences = merge_adjacent_japanese(split_sentences)
|
| 294 |
-
|
| 295 |
-
# 剔除只包含标点符号的元素
|
| 296 |
-
clean_sentences = [s for s in merged_japanese_sentences if not is_only_punctuation(s)]
|
| 297 |
-
|
| 298 |
-
# 移除空字符串并去除多余引号
|
| 299 |
-
return [s.replace('"','').strip() for s in clean_sentences if s]
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
# 移除空字符串
|
| 304 |
-
|
| 305 |
-
def is_mixed_language(sentence):
|
| 306 |
-
contains_chinese = re.search(r'[\u4e00-\u9fff]', sentence) is not None
|
| 307 |
-
contains_japanese = re.search(r'[\u3040-\u30ff\u31f0-\u31ff]', sentence) is not None
|
| 308 |
-
contains_english = re.search(r'[a-zA-Z]', sentence) is not None
|
| 309 |
-
languages_count = sum([contains_chinese, contains_japanese, contains_english])
|
| 310 |
-
return languages_count > 1
|
| 311 |
-
|
| 312 |
-
def split_mixed_language(sentence):
|
| 313 |
-
# 分割混合语言句子
|
| 314 |
-
sub_sentences = re.split(r'(?<=[。!?\.\?!])(?=")|(?<=")(?=[\u4e00-\u9fff\u3040-\u30ff\u31f0-\u31ff]|[a-zA-Z])', sentence)
|
| 315 |
-
return [s.strip() for s in sub_sentences if s.strip()]
|
| 316 |
-
|
| 317 |
-
def seconds_to_ass_time(seconds):
|
| 318 |
-
"""将秒数转换为ASS时间格式"""
|
| 319 |
-
hours = int(seconds / 3600)
|
| 320 |
-
minutes = int((seconds % 3600) / 60)
|
| 321 |
-
seconds = int(seconds) % 60
|
| 322 |
-
milliseconds = int((seconds - int(seconds)) * 1000)
|
| 323 |
-
return "{:01d}:{:02d}:{:02d}.{:02d}".format(hours, minutes, seconds, int(milliseconds / 10))
|
| 324 |
-
|
| 325 |
-
def extract_text_from_epub(file_path):
|
| 326 |
-
book = epub.read_epub(file_path)
|
| 327 |
-
content = []
|
| 328 |
-
for item in book.items:
|
| 329 |
-
if isinstance(item, epub.EpubHtml):
|
| 330 |
-
soup = BeautifulSoup(item.content, 'html.parser')
|
| 331 |
-
content.append(soup.get_text())
|
| 332 |
-
return '\n'.join(content)
|
| 333 |
-
|
| 334 |
-
def extract_text_from_pdf(file_path):
|
| 335 |
-
with open(file_path, 'rb') as file:
|
| 336 |
-
reader = PdfReader(file)
|
| 337 |
-
content = [page.extract_text() for page in reader.pages]
|
| 338 |
-
return '\n'.join(content)
|
| 339 |
-
|
| 340 |
-
def remove_annotations(text):
|
| 341 |
-
# 移除方括号、尖括号和中文方括号中的内容
|
| 342 |
-
text = re.sub(r'\[.*?\]', '', text)
|
| 343 |
-
text = re.sub(r'\<.*?\>', '', text)
|
| 344 |
-
text = re.sub(r'​``【oaicite:1】``​', '', text)
|
| 345 |
-
return text
|
| 346 |
-
|
| 347 |
-
def extract_text_from_file(inputFile):
|
| 348 |
-
file_extension = os.path.splitext(inputFile)[1].lower()
|
| 349 |
-
if file_extension == ".epub":
|
| 350 |
-
return extract_text_from_epub(inputFile)
|
| 351 |
-
elif file_extension == ".pdf":
|
| 352 |
-
return extract_text_from_pdf(inputFile)
|
| 353 |
-
elif file_extension == ".txt":
|
| 354 |
-
with open(inputFile, 'r', encoding='utf-8') as f:
|
| 355 |
-
return f.read()
|
| 356 |
-
else:
|
| 357 |
-
raise ValueError(f"Unsupported file format: {file_extension}")
|
| 358 |
-
|
| 359 |
-
def split_by_punctuation(sentence):
|
| 360 |
-
"""按照中文次级标点符号分割句子"""
|
| 361 |
-
# 常见的中文次级分隔符号:逗号、分号等
|
| 362 |
-
parts = re.split(r'([,,;;])', sentence)
|
| 363 |
-
# 将标点符号与前面的词语合并,避免单独标点符号成为一个部分
|
| 364 |
-
merged_parts = []
|
| 365 |
-
for part in parts:
|
| 366 |
-
if part and not part in ',,;;':
|
| 367 |
-
merged_parts.append(part)
|
| 368 |
-
elif merged_parts:
|
| 369 |
-
merged_parts[-1] += part
|
| 370 |
-
return merged_parts
|
| 371 |
-
|
| 372 |
-
def split_long_sentences(sentence, max_length=30):
|
| 373 |
-
"""如果中文句子太长,先按标点分割,必要时使用jieba进行分词并分割"""
|
| 374 |
-
if len(sentence) > max_length and is_chinese(sentence):
|
| 375 |
-
# 首先尝试按照次级标点符号分割
|
| 376 |
-
preliminary_parts = split_by_punctuation(sentence)
|
| 377 |
-
new_sentences = []
|
| 378 |
-
|
| 379 |
-
for part in preliminary_parts:
|
| 380 |
-
# 如果部分仍然太长,使用jieba进行分词
|
| 381 |
-
if len(part) > max_length:
|
| 382 |
-
words = jieba.lcut(part)
|
| 383 |
-
current_sentence = ""
|
| 384 |
-
for word in words:
|
| 385 |
-
if len(current_sentence) + len(word) > max_length:
|
| 386 |
-
new_sentences.append(current_sentence)
|
| 387 |
-
current_sentence = word
|
| 388 |
-
else:
|
| 389 |
-
current_sentence += word
|
| 390 |
-
if current_sentence:
|
| 391 |
-
new_sentences.append(current_sentence)
|
| 392 |
-
else:
|
| 393 |
-
new_sentences.append(part)
|
| 394 |
-
|
| 395 |
-
return new_sentences
|
| 396 |
-
return [sentence] # 如果句子不长或不是中文,直接返回
|
| 397 |
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
# 使用正则表达式找出所有英文单词
|
| 401 |
-
english_parts = re.findall(r'\b[A-Za-z]+\b', text) # \b为单词边界标识
|
| 402 |
-
|
| 403 |
-
# 对每个英文单词进行片假名转换
|
| 404 |
-
kana_parts = ['\n{}\n'.format(romajitable.to_kana(word).katakana) for word in english_parts]
|
| 405 |
-
|
| 406 |
-
# 替换原文本中的英文部分
|
| 407 |
-
for eng, kana in zip(english_parts, kana_parts):
|
| 408 |
-
text = text.replace(eng, kana, 1) # 限制每次只替换一个实例
|
| 409 |
-
|
| 410 |
-
return text
|
| 411 |
|
| 412 |
def get_net_g(model_path: str, device: str, hps):
|
| 413 |
net_g = SynthesizerTrn(
|
|
@@ -480,6 +205,8 @@ def infer(
|
|
| 480 |
if style_text == None:
|
| 481 |
style_text = ""
|
| 482 |
style_weight=0,
|
|
|
|
|
|
|
| 483 |
if language == "JP":
|
| 484 |
text = translate(text,"jp")
|
| 485 |
if language == "ZH":
|
|
@@ -668,7 +395,7 @@ def generate_audio(
|
|
| 668 |
if inputFile:
|
| 669 |
text = extract_text_from_file(inputFile.name)
|
| 670 |
sentence_mode = 'paragraph'
|
| 671 |
-
if mode == 'pyopenjtalk-V2.3':
|
| 672 |
if sentence_mode == 'sentence':
|
| 673 |
audio = infer(
|
| 674 |
text,
|
|
@@ -751,6 +478,9 @@ def generate_audio(
|
|
| 751 |
return file_path
|
| 752 |
|
| 753 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
| 754 |
for dirpath, dirnames, filenames in os.walk('Data/BangDream/models/'):
|
| 755 |
for filename in filenames:
|
| 756 |
modelPaths.append(os.path.join(dirpath, filename))
|
|
@@ -762,9 +492,11 @@ if __name__ == "__main__":
|
|
| 762 |
speakers = list(speaker_ids.keys())
|
| 763 |
with gr.Blocks() as app:
|
| 764 |
gr.Markdown(value="""
|
|
|
|
|
|
|
|
|
|
| 765 |
([Bert-Vits2](https://github.com/Stardust-minus/Bert-VITS2) V2.3)少歌邦邦全员在线语音合成\n
|
| 766 |
[好玩的](http://love.soyorin.top/)\n
|
| 767 |
-
该界面的真实链接(国内可用): https://mahiruoshi-bangdream-bert-vits2.hf.space/\n
|
| 768 |
API: https://mahiruoshi-bert-vits2-api.hf.space/ \n
|
| 769 |
调用方式: https://mahiruoshi-bert-vits2-api.hf.space/?text={{speakText}}&speaker=chosen_speaker\n
|
| 770 |
推荐搭配[Legado开源阅读](https://github.com/gedoor/legado)或[聊天bot](https://github.com/Paraworks/BangDreamAi)使用\n
|
|
@@ -809,13 +541,13 @@ if __name__ == "__main__":
|
|
| 809 |
choices=modes, value="pyopenjtalk-V2.3", label="TTS模式,合成少歌角色需要切换成 pyopenjtalk-V2.3-Katakana "
|
| 810 |
)
|
| 811 |
sentence_mode = gr.Dropdown(
|
| 812 |
-
choices=sentence_modes, value="
|
| 813 |
)
|
| 814 |
with gr.Accordion(label="扩展选项", open=False):
|
| 815 |
inputFile = gr.UploadButton(label="txt文件输入")
|
| 816 |
speakerList = gr.TextArea(
|
| 817 |
label="角色对应表,如果你记不住角色名可以这样,左边是你想要在每一句话合成中用到的speaker(见角色清单)右边是你上传文本时分隔符左边设置的说话人:{ChoseSpeakerFromConfigList}|{SeakerInUploadText}",
|
| 818 |
-
value = "
|
| 819 |
)
|
| 820 |
groupSize = gr.Slider(
|
| 821 |
minimum=10, maximum=1000 if torch.cuda.is_available() else 50,value = 50, step=1, label="单个音频文件包含的最大句子数"
|
|
@@ -835,8 +567,8 @@ if __name__ == "__main__":
|
|
| 835 |
text = gr.TextArea(
|
| 836 |
label="文本输入,可用'|'分割说话人和文本,注意换行",
|
| 837 |
info="输入纯日语或者中文",
|
| 838 |
-
|
| 839 |
-
|
| 840 |
)
|
| 841 |
style_text = gr.Textbox(
|
| 842 |
label="情感辅助文本",
|
|
|
|
| 33 |
import torch
|
| 34 |
import commons
|
| 35 |
from text import cleaned_text_to_sequence, get_bert
|
| 36 |
+
|
| 37 |
+
from tools.sentence import extrac, is_japanese, is_chinese, seconds_to_ass_time, extract_text_from_file, remove_annotations,extract_and_convert
|
| 38 |
+
|
| 39 |
from text.cleaner import clean_text
|
| 40 |
import utils
|
| 41 |
|
| 42 |
+
from tools.translate import translate
|
| 43 |
+
|
| 44 |
from models import SynthesizerTrn
|
| 45 |
from text.symbols import symbols
|
| 46 |
import sys
|
|
|
|
| 71 |
languages = [ "Auto", "ZH", "JP"]
|
| 72 |
modelPaths = []
|
| 73 |
modes = ['pyopenjtalk-V2.3']
|
| 74 |
+
if torch.cuda.is_available():
|
| 75 |
+
modes = ['pyopenjtalk-V2.3','fugashi-V2.3']
|
| 76 |
sentence_modes = ['sentence','paragraph']
|
| 77 |
|
| 78 |
net_g = None
|
|
|
|
| 104 |
"西克菲尔特音乐学院":["晶","未知留","八千代","栞","美帆"]
|
| 105 |
}
|
| 106 |
|
| 107 |
+
# 推理工具
|
| 108 |
+
def download_unidic():
|
| 109 |
+
try:
|
| 110 |
+
Tagger()
|
| 111 |
+
print("Tagger launch successfully.")
|
| 112 |
+
except Exception as e:
|
| 113 |
+
print("UNIDIC dictionary not found, downloading...")
|
| 114 |
+
subprocess.run([sys.executable, "-m", "unidic", "download"])
|
| 115 |
+
print("Download completed.")
|
| 116 |
+
|
| 117 |
+
def kanji_to_hiragana(text):
|
| 118 |
+
global tagger
|
| 119 |
+
output = ""
|
| 120 |
+
|
| 121 |
+
# 更新正则表达式以更准确地区分文本和标点符号
|
| 122 |
+
segments = re.findall(r'[一-龥ぁ-んァ-ン\w]+|[^\一-龥ぁ-んァ-ン\w\s]', text, re.UNICODE)
|
| 123 |
+
|
| 124 |
+
for segment in segments:
|
| 125 |
+
if re.match(r'[一-龥ぁ-んァ-ン\w]+', segment):
|
| 126 |
+
# 如果是单词或汉字,转换为平假名
|
| 127 |
+
for word in tagger(segment):
|
| 128 |
+
kana = word.feature.kana or word.surface
|
| 129 |
+
hiragana = jaconv.kata2hira(kana) # 将片假名转换为平假名
|
| 130 |
+
output += hiragana
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
else:
|
| 132 |
+
# 如果是标点符号,保持不变
|
| 133 |
+
output += segment
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
+
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
def get_net_g(model_path: str, device: str, hps):
|
| 138 |
net_g = SynthesizerTrn(
|
|
|
|
| 205 |
if style_text == None:
|
| 206 |
style_text = ""
|
| 207 |
style_weight=0,
|
| 208 |
+
if mode == 'fugashi-V2.3':
|
| 209 |
+
text = kanji_to_hiragana(text) if is_japanese(text) else text
|
| 210 |
if language == "JP":
|
| 211 |
text = translate(text,"jp")
|
| 212 |
if language == "ZH":
|
|
|
|
| 395 |
if inputFile:
|
| 396 |
text = extract_text_from_file(inputFile.name)
|
| 397 |
sentence_mode = 'paragraph'
|
| 398 |
+
if mode == 'pyopenjtalk-V2.3' or mode == 'fugashi-V2.3':
|
| 399 |
if sentence_mode == 'sentence':
|
| 400 |
audio = infer(
|
| 401 |
text,
|
|
|
|
| 478 |
return file_path
|
| 479 |
|
| 480 |
if __name__ == "__main__":
|
| 481 |
+
if torch.cuda.is_available():
|
| 482 |
+
download_unidic()
|
| 483 |
+
tagger = Tagger()
|
| 484 |
for dirpath, dirnames, filenames in os.walk('Data/BangDream/models/'):
|
| 485 |
for filename in filenames:
|
| 486 |
modelPaths.append(os.path.join(dirpath, filename))
|
|
|
|
| 492 |
speakers = list(speaker_ids.keys())
|
| 493 |
with gr.Blocks() as app:
|
| 494 |
gr.Markdown(value="""
|
| 495 |
+
[日语特化版(推荐)](https://huggingface.co/spaces/Mahiruoshi/BangStarlight),国内可用连接: https://mahiruoshi-BangStarlight.hf.space/\n
|
| 496 |
+
[假名标注版](https://huggingface.co/spaces/Mahiruoshi/MyGO_VIts-bert),国内可用连接: https://mahiruoshi-MyGO-VIts-bert.hf.space/\n
|
| 497 |
+
该界面的真实链接(国内可用): https://mahiruoshi-bangdream-bert-vits2.hf.space/\n
|
| 498 |
([Bert-Vits2](https://github.com/Stardust-minus/Bert-VITS2) V2.3)少歌邦邦全员在线语音合成\n
|
| 499 |
[好玩的](http://love.soyorin.top/)\n
|
|
|
|
| 500 |
API: https://mahiruoshi-bert-vits2-api.hf.space/ \n
|
| 501 |
调用方式: https://mahiruoshi-bert-vits2-api.hf.space/?text={{speakText}}&speaker=chosen_speaker\n
|
| 502 |
推荐搭配[Legado开源阅读](https://github.com/gedoor/legado)或[聊天bot](https://github.com/Paraworks/BangDreamAi)使用\n
|
|
|
|
| 541 |
choices=modes, value="pyopenjtalk-V2.3", label="TTS模式,合成少歌角色需要切换成 pyopenjtalk-V2.3-Katakana "
|
| 542 |
)
|
| 543 |
sentence_mode = gr.Dropdown(
|
| 544 |
+
choices=sentence_modes, value="sentence", label="文本合成模式"
|
| 545 |
)
|
| 546 |
with gr.Accordion(label="扩展选项", open=False):
|
| 547 |
inputFile = gr.UploadButton(label="txt文件输入")
|
| 548 |
speakerList = gr.TextArea(
|
| 549 |
label="角色对应表,如果你记不住角色名可以这样,左边是你想要在每一句话合成中用到的speaker(见角色清单)右边是你上传文本时分隔符左边设置的说话人:{ChoseSpeakerFromConfigList}|{SeakerInUploadText}",
|
| 550 |
+
value = "ましろ|天音\n七深|七深\n透子|透子\nつくし|筑紫\n瑠唯|瑠唯\nそよ|素世\n祥子|祥子",
|
| 551 |
)
|
| 552 |
groupSize = gr.Slider(
|
| 553 |
minimum=10, maximum=1000 if torch.cuda.is_available() else 50,value = 50, step=1, label="单个音频文件包含的最大句子数"
|
|
|
|
| 567 |
text = gr.TextArea(
|
| 568 |
label="文本输入,可用'|'分割说话人和文本,注意换行",
|
| 569 |
info="输入纯日语或者中文",
|
| 570 |
+
value=f"{name}|你是职业歌手吗\n天音|我觉得我是",
|
| 571 |
+
placeholder=f"私は{name}です、あの子はだれ? "
|
| 572 |
)
|
| 573 |
style_text = gr.Textbox(
|
| 574 |
label="情感辅助文本",
|