Spaces:
Running
Running
Anirudh Esthuri
commited on
Commit
Β·
e91e2b4
1
Parent(s):
bd7679d
Copy all files from Playground - app, gateway_client, llm, model_config, requirements, styles, assets, and config files
Browse files- .gitignore +53 -0
- .streamlit/config.toml +4 -0
- Dockerfile +14 -0
- README.md +11 -6
- app.py +193 -0
- assets/memmachine_logo.png +0 -0
- assets/memverge_logo.png +0 -0
- gateway_client.py +149 -0
- llm.py +219 -0
- model_config.py +22 -0
- requirements.txt +12 -0
- styles.css +26 -0
.gitignore
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# macOS
|
| 2 |
+
.DS_Store
|
| 3 |
+
.AppleDouble
|
| 4 |
+
.LSOverride
|
| 5 |
+
|
| 6 |
+
# Python
|
| 7 |
+
__pycache__/
|
| 8 |
+
*.py[cod]
|
| 9 |
+
*$py.class
|
| 10 |
+
*.so
|
| 11 |
+
.Python
|
| 12 |
+
build/
|
| 13 |
+
develop-eggs/
|
| 14 |
+
dist/
|
| 15 |
+
downloads/
|
| 16 |
+
eggs/
|
| 17 |
+
.eggs/
|
| 18 |
+
lib/
|
| 19 |
+
lib64/
|
| 20 |
+
parts/
|
| 21 |
+
sdist/
|
| 22 |
+
var/
|
| 23 |
+
wheels/
|
| 24 |
+
*.egg-info/
|
| 25 |
+
.installed.cfg
|
| 26 |
+
*.egg
|
| 27 |
+
MANIFEST
|
| 28 |
+
|
| 29 |
+
# Virtual environments
|
| 30 |
+
venv/
|
| 31 |
+
env/
|
| 32 |
+
ENV/
|
| 33 |
+
.venv
|
| 34 |
+
|
| 35 |
+
# IDE
|
| 36 |
+
.vscode/
|
| 37 |
+
.idea/
|
| 38 |
+
*.swp
|
| 39 |
+
*.swo
|
| 40 |
+
*~
|
| 41 |
+
|
| 42 |
+
# Environment variables
|
| 43 |
+
.env
|
| 44 |
+
.env.local
|
| 45 |
+
|
| 46 |
+
# Logs
|
| 47 |
+
*.log
|
| 48 |
+
|
| 49 |
+
# Cache
|
| 50 |
+
.cache/
|
| 51 |
+
.pytest_cache/
|
| 52 |
+
.mypy_cache/
|
| 53 |
+
|
.streamlit/config.toml
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[server]
|
| 2 |
+
headless = true
|
| 3 |
+
enableCORS = false
|
| 4 |
+
enableXsrfProtection = false
|
Dockerfile
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.10-slim
|
| 2 |
+
|
| 3 |
+
WORKDIR /app
|
| 4 |
+
|
| 5 |
+
RUN apt-get update && apt-get install -y git
|
| 6 |
+
|
| 7 |
+
COPY . .
|
| 8 |
+
|
| 9 |
+
RUN pip install --upgrade pip
|
| 10 |
+
RUN pip install -r requirements.txt
|
| 11 |
+
|
| 12 |
+
# HuggingFace sets $PORT, don't override it.
|
| 13 |
+
|
| 14 |
+
CMD ["bash", "-c", "echo Using PORT=$PORT && streamlit run app.py --server.address 0.0.0.0 --server.port $PORT"]
|
README.md
CHANGED
|
@@ -1,12 +1,17 @@
|
|
| 1 |
---
|
| 2 |
title: MemMachine Playground
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom: yellow
|
| 5 |
-
colorTo: blue
|
| 6 |
sdk: docker
|
|
|
|
| 7 |
pinned: false
|
| 8 |
-
license: apache-2.0
|
| 9 |
-
short_description: MemMachine-Playground
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
title: MemMachine Playground
|
| 3 |
+
emoji: π§
|
|
|
|
|
|
|
| 4 |
sdk: docker
|
| 5 |
+
app_port: 7860
|
| 6 |
pinned: false
|
|
|
|
|
|
|
| 7 |
---
|
| 8 |
|
| 9 |
+
|
| 10 |
+
# MemMachine Frontend Playground
|
| 11 |
+
|
| 12 |
+
This is a Streamlit-based UI for interacting with a remote MemMachine backend.
|
| 13 |
+
|
| 14 |
+
- Frontend: Streamlit (runs in this Space)
|
| 15 |
+
- Backend: MemMachine server running on EC2
|
| 16 |
+
- Memory + vector search: Neo4j + Postgres
|
| 17 |
+
- All requests route to your backend via `gateway_client.py`
|
app.py
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import cast
|
| 3 |
+
|
| 4 |
+
import streamlit as st
|
| 5 |
+
from gateway_client import delete_profile, ingest_and_rewrite
|
| 6 |
+
from llm import chat, set_model
|
| 7 |
+
from model_config import MODEL_CHOICES, MODEL_TO_PROVIDER
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def rewrite_message(
|
| 11 |
+
msg: str, persona_name: str, show_rationale: bool, skip_rewrite: bool
|
| 12 |
+
) -> str:
|
| 13 |
+
if skip_rewrite:
|
| 14 |
+
rewritten_msg = msg
|
| 15 |
+
if show_rationale:
|
| 16 |
+
rewritten_msg += " At the beginning of your response, please say the following in ITALIC: 'Persona Rationale: No personalization applied.'. Begin your answer on the next line."
|
| 17 |
+
else:
|
| 18 |
+
try:
|
| 19 |
+
rewritten_msg = ingest_and_rewrite(
|
| 20 |
+
user_id=persona_name, query=msg, model_type=provider
|
| 21 |
+
)
|
| 22 |
+
if show_rationale:
|
| 23 |
+
rewritten_msg += " At the beginning of your response, please say the following in ITALIC: 'Persona Rationale: ' followed by 1 sentence about how your reasoning for how the persona traits influenced this response, also in italics. Begin your answer on the next line."
|
| 24 |
+
|
| 25 |
+
except Exception as e:
|
| 26 |
+
# If backend is unavailable, use original message without rewriting
|
| 27 |
+
st.warning(f"Backend memory server unavailable. Using message without personalization: {e}")
|
| 28 |
+
rewritten_msg = msg
|
| 29 |
+
if show_rationale:
|
| 30 |
+
rewritten_msg += " At the beginning of your response, please say the following in ITALIC: 'Persona Rationale: No personalization applied (backend unavailable).'. Begin your answer on the next line."
|
| 31 |
+
return rewritten_msg
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 35 |
+
# Page setup & CSS
|
| 36 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 37 |
+
st.set_page_config(page_title="MemMachine Chatbot", layout="wide")
|
| 38 |
+
with open("./styles.css") as f:
|
| 39 |
+
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 43 |
+
# Sidebar
|
| 44 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 45 |
+
with st.sidebar:
|
| 46 |
+
st.image("./assets/memmachine_logo.png", use_container_width=True)
|
| 47 |
+
|
| 48 |
+
st.markdown("#### Choose Model")
|
| 49 |
+
|
| 50 |
+
model_id = st.selectbox(
|
| 51 |
+
"Choose Model", MODEL_CHOICES, index=0, label_visibility="collapsed"
|
| 52 |
+
)
|
| 53 |
+
provider = MODEL_TO_PROVIDER[model_id]
|
| 54 |
+
set_model(model_id)
|
| 55 |
+
|
| 56 |
+
st.markdown("#### Choose user persona")
|
| 57 |
+
selected_persona = st.selectbox(
|
| 58 |
+
"Choose user persona",
|
| 59 |
+
["Charlie", "Jing", "Charles", "Control"],
|
| 60 |
+
label_visibility="collapsed",
|
| 61 |
+
)
|
| 62 |
+
custom_persona = st.text_input("Or enter your name", "")
|
| 63 |
+
persona_name = (
|
| 64 |
+
custom_persona.strip() if custom_persona.strip() else selected_persona
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
skip_rewrite = st.checkbox("Skip Rewrite")
|
| 68 |
+
compare_personas = st.checkbox("Compare with Control persona")
|
| 69 |
+
show_rationale = st.checkbox("Show Persona Rationale")
|
| 70 |
+
|
| 71 |
+
st.divider()
|
| 72 |
+
if st.button("Clear chat", use_container_width=True):
|
| 73 |
+
st.session_state.history = []
|
| 74 |
+
st.rerun()
|
| 75 |
+
if st.button("Delete Profile", use_container_width=True):
|
| 76 |
+
success = delete_profile(persona_name)
|
| 77 |
+
st.session_state.history = []
|
| 78 |
+
if success:
|
| 79 |
+
st.success(f"Profile for '{persona_name}' deleted.")
|
| 80 |
+
else:
|
| 81 |
+
st.error(f"Failed to delete profile for '{persona_name}'.")
|
| 82 |
+
st.divider()
|
| 83 |
+
|
| 84 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 85 |
+
# Session state
|
| 86 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 87 |
+
if "history" not in st.session_state:
|
| 88 |
+
st.session_state.history = cast(list[dict], [])
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 92 |
+
# Enforce alternating roles
|
| 93 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 94 |
+
def clean_history(history: list[dict], persona: str) -> list[dict]:
|
| 95 |
+
out = []
|
| 96 |
+
for turn in history:
|
| 97 |
+
if turn.get("role") == "user":
|
| 98 |
+
out.append({"role": "user", "content": turn["content"]})
|
| 99 |
+
elif turn.get("role") == "assistant" and turn.get("persona") == persona:
|
| 100 |
+
out.append({"role": "assistant", "content": turn["content"]})
|
| 101 |
+
cleaned = []
|
| 102 |
+
last_role = None
|
| 103 |
+
for msg in out:
|
| 104 |
+
if msg["role"] != last_role:
|
| 105 |
+
cleaned.append(msg)
|
| 106 |
+
last_role = msg["role"]
|
| 107 |
+
return cleaned
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def append_user_turn(msgs: list[dict], new_user_msg: str) -> list[dict]:
|
| 111 |
+
if msgs and msgs[-1]["role"] == "user":
|
| 112 |
+
msgs[-1] = {"role": "user", "content": new_user_msg}
|
| 113 |
+
else:
|
| 114 |
+
msgs.append({"role": "user", "content": new_user_msg})
|
| 115 |
+
return msgs
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 119 |
+
# Title
|
| 120 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 121 |
+
st.title("MemMachine Chatbot")
|
| 122 |
+
|
| 123 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 124 |
+
# Chat logic
|
| 125 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 126 |
+
msg = st.chat_input("Type your messageβ¦")
|
| 127 |
+
if msg:
|
| 128 |
+
st.session_state.history.append({"role": "user", "content": msg})
|
| 129 |
+
# rewritten_msg = "Use the persona profile to personalize your naswer only when applicable.\n"
|
| 130 |
+
if compare_personas:
|
| 131 |
+
all_answers = {}
|
| 132 |
+
rewritten_msg = rewrite_message(msg, persona_name, show_rationale, False)
|
| 133 |
+
msgs = clean_history(st.session_state.history, persona_name)
|
| 134 |
+
msgs = append_user_turn(msgs, rewritten_msg)
|
| 135 |
+
txt, lat, tok, tps = chat(msgs, persona_name)
|
| 136 |
+
all_answers[persona_name] = txt
|
| 137 |
+
|
| 138 |
+
rewritten_msg_control = rewrite_message(msg, "Control", show_rationale, True)
|
| 139 |
+
msgs_control = clean_history(st.session_state.history, "Control")
|
| 140 |
+
msgs_control = append_user_turn(msgs_control, rewritten_msg_control)
|
| 141 |
+
txt_control, lat, tok, tps = chat(msgs_control, "Arnold")
|
| 142 |
+
all_answers["Control"] = txt_control
|
| 143 |
+
|
| 144 |
+
st.session_state.history.append(
|
| 145 |
+
{"role": "assistant_all", "axis": "role", "content": all_answers}
|
| 146 |
+
)
|
| 147 |
+
else:
|
| 148 |
+
rewritten_msg = rewrite_message(msg, persona_name, show_rationale, skip_rewrite)
|
| 149 |
+
msgs = clean_history(st.session_state.history, persona_name)
|
| 150 |
+
msgs = append_user_turn(msgs, rewritten_msg)
|
| 151 |
+
txt, lat, tok, tps = chat(
|
| 152 |
+
msgs, "Arnold" if persona_name == "Control" else persona_name
|
| 153 |
+
)
|
| 154 |
+
st.session_state.history.append(
|
| 155 |
+
{"role": "assistant", "persona": persona_name, "content": txt}
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 159 |
+
# Chat history display
|
| 160 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 161 |
+
for turn in st.session_state.history:
|
| 162 |
+
if turn.get("role") == "user":
|
| 163 |
+
st.chat_message("user").write(turn["content"])
|
| 164 |
+
elif turn.get("role") == "assistant":
|
| 165 |
+
st.chat_message("assistant").write(turn["content"])
|
| 166 |
+
elif turn.get("role") == "assistant_all":
|
| 167 |
+
content_items = list(turn["content"].items())
|
| 168 |
+
if len(content_items) >= 2:
|
| 169 |
+
cols = st.columns([1, 0.03, 1])
|
| 170 |
+
persona_label, persona_response = content_items[0]
|
| 171 |
+
control_label, control_response = content_items[1]
|
| 172 |
+
with cols[0]:
|
| 173 |
+
st.markdown(f"**{persona_label}**")
|
| 174 |
+
st.markdown(
|
| 175 |
+
f'<div class="answer">{persona_response}</div>',
|
| 176 |
+
unsafe_allow_html=True,
|
| 177 |
+
)
|
| 178 |
+
with cols[1]:
|
| 179 |
+
st.markdown(
|
| 180 |
+
'<div class="vertical-divider"></div>', unsafe_allow_html=True
|
| 181 |
+
)
|
| 182 |
+
with cols[2]:
|
| 183 |
+
st.markdown(f"**{control_label}**")
|
| 184 |
+
st.markdown(
|
| 185 |
+
f'<div class="answer">{control_response}</div>',
|
| 186 |
+
unsafe_allow_html=True,
|
| 187 |
+
)
|
| 188 |
+
else:
|
| 189 |
+
for label, response in content_items:
|
| 190 |
+
st.markdown(f"**{label}**")
|
| 191 |
+
st.markdown(
|
| 192 |
+
f'<div class="answer">{response}</div>', unsafe_allow_html=True
|
| 193 |
+
)
|
assets/memmachine_logo.png
ADDED
|
assets/memverge_logo.png
ADDED
|
gateway_client.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from datetime import datetime
|
| 3 |
+
|
| 4 |
+
import requests
|
| 5 |
+
|
| 6 |
+
# Backend server URL - can be set via environment variable
|
| 7 |
+
# For Hugging Face Spaces: Set MEMORY_SERVER_URL in Space settings (Repository secrets)
|
| 8 |
+
# For local development: Set MEMORY_SERVER_URL in your .env file
|
| 9 |
+
# Default: http://3.232.95.65:8080 (MemMachine backend)
|
| 10 |
+
EXAMPLE_SERVER_PORT = os.getenv("MEMORY_SERVER_URL")
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def ingest_and_rewrite(user_id: str, query: str, model_type: str = "openai") -> str:
|
| 15 |
+
"""Pass a raw user message through the memory server and get context-aware response."""
|
| 16 |
+
print("entered ingest_and_rewrite")
|
| 17 |
+
|
| 18 |
+
# First, store the message in memory
|
| 19 |
+
session_data = {
|
| 20 |
+
"group_id": user_id,
|
| 21 |
+
"agent_id": ["assistant"],
|
| 22 |
+
"user_id": [user_id],
|
| 23 |
+
"session_id": f"session_{user_id}",
|
| 24 |
+
}
|
| 25 |
+
episode_data = {
|
| 26 |
+
"session": session_data,
|
| 27 |
+
"producer": user_id,
|
| 28 |
+
"produced_for": "assistant",
|
| 29 |
+
"episode_content": query,
|
| 30 |
+
"episode_type": "message",
|
| 31 |
+
"metadata": {
|
| 32 |
+
"speaker": user_id,
|
| 33 |
+
"timestamp": datetime.now().isoformat(),
|
| 34 |
+
"type": "message",
|
| 35 |
+
},
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
# Store the episode
|
| 39 |
+
store_resp = requests.post(
|
| 40 |
+
f"{EXAMPLE_SERVER_PORT}/memory",
|
| 41 |
+
json=episode_data,
|
| 42 |
+
timeout=1000,
|
| 43 |
+
)
|
| 44 |
+
store_resp.raise_for_status()
|
| 45 |
+
|
| 46 |
+
# Then search for relevant context
|
| 47 |
+
search_data = {
|
| 48 |
+
"session": session_data,
|
| 49 |
+
"query": query,
|
| 50 |
+
"limit": 5,
|
| 51 |
+
"filter": {"producer_id": user_id},
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
search_resp = requests.post(
|
| 55 |
+
f"{EXAMPLE_SERVER_PORT}/memory/search",
|
| 56 |
+
json=search_data,
|
| 57 |
+
timeout=1000,
|
| 58 |
+
)
|
| 59 |
+
search_resp.raise_for_status()
|
| 60 |
+
|
| 61 |
+
search_results = search_resp.json()
|
| 62 |
+
content = search_results.get("content", {})
|
| 63 |
+
episodic_memory = content.get("episodic_memory", [])
|
| 64 |
+
profile_memory = content.get("profile_memory", [])
|
| 65 |
+
|
| 66 |
+
# Format the response similar to example_server.py
|
| 67 |
+
if profile_memory and episodic_memory:
|
| 68 |
+
profile_str = "\n".join([str(p) for p in profile_memory]) if isinstance(profile_memory, list) else str(profile_memory)
|
| 69 |
+
context_str = "\n".join([str(c) for c in episodic_memory]) if isinstance(episodic_memory, list) else str(episodic_memory)
|
| 70 |
+
return f"Profile: {profile_str}\n\nContext: {context_str}\n\nQuery: {query}"
|
| 71 |
+
elif profile_memory:
|
| 72 |
+
profile_str = "\n".join([str(p) for p in profile_memory]) if isinstance(profile_memory, list) else str(profile_memory)
|
| 73 |
+
return f"Profile: {profile_str}\n\nQuery: {query}"
|
| 74 |
+
elif episodic_memory:
|
| 75 |
+
context_str = "\n".join([str(c) for c in episodic_memory]) if isinstance(episodic_memory, list) else str(episodic_memory)
|
| 76 |
+
return f"Context: {context_str}\n\nQuery: {query}"
|
| 77 |
+
else:
|
| 78 |
+
return f"Message ingested successfully. No relevant context found yet.\n\nQuery: {query}"
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def add_session_message(user_id: str, msg: str) -> None:
|
| 82 |
+
"""Add a raw message into memory via memory server."""
|
| 83 |
+
session_data = {
|
| 84 |
+
"group_id": user_id,
|
| 85 |
+
"agent_id": ["assistant"],
|
| 86 |
+
"user_id": [user_id],
|
| 87 |
+
"session_id": f"session_{user_id}",
|
| 88 |
+
}
|
| 89 |
+
episode_data = {
|
| 90 |
+
"session": session_data,
|
| 91 |
+
"producer": user_id,
|
| 92 |
+
"produced_for": "assistant",
|
| 93 |
+
"episode_content": msg,
|
| 94 |
+
"episode_type": "message",
|
| 95 |
+
"metadata": {
|
| 96 |
+
"speaker": user_id,
|
| 97 |
+
"timestamp": datetime.now().isoformat(),
|
| 98 |
+
"type": "message",
|
| 99 |
+
},
|
| 100 |
+
}
|
| 101 |
+
requests.post(
|
| 102 |
+
f"{EXAMPLE_SERVER_PORT}/memory",
|
| 103 |
+
json=episode_data,
|
| 104 |
+
timeout=5,
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def create_persona_query(user_id: str, query: str) -> str:
|
| 109 |
+
"""Create a persona-aware query by searching memory context via memory server."""
|
| 110 |
+
session_data = {
|
| 111 |
+
"group_id": user_id,
|
| 112 |
+
"agent_id": ["assistant"],
|
| 113 |
+
"user_id": [user_id],
|
| 114 |
+
"session_id": f"session_{user_id}",
|
| 115 |
+
}
|
| 116 |
+
search_data = {
|
| 117 |
+
"session": session_data,
|
| 118 |
+
"query": query,
|
| 119 |
+
"limit": 5,
|
| 120 |
+
"filter": {"producer_id": user_id},
|
| 121 |
+
}
|
| 122 |
+
|
| 123 |
+
resp = requests.post(
|
| 124 |
+
f"{EXAMPLE_SERVER_PORT}/memory/search",
|
| 125 |
+
json=search_data,
|
| 126 |
+
timeout=1000,
|
| 127 |
+
)
|
| 128 |
+
resp.raise_for_status()
|
| 129 |
+
|
| 130 |
+
search_results = resp.json()
|
| 131 |
+
content = search_results.get("content", {})
|
| 132 |
+
profile_memory = content.get("profile_memory", [])
|
| 133 |
+
|
| 134 |
+
if profile_memory:
|
| 135 |
+
profile_str = "\n".join([str(p) for p in profile_memory]) if isinstance(profile_memory, list) else str(profile_memory)
|
| 136 |
+
return f"Based on your profile: {profile_str}\n\nQuery: {query}"
|
| 137 |
+
else:
|
| 138 |
+
return f"Query: {query}"
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def add_new_session_message(user_id: str, msg: str) -> None:
|
| 142 |
+
"""Alias for add_session_message for backward compatibility."""
|
| 143 |
+
add_session_message(user_id, msg)
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def delete_profile(user_id: str) -> bool:
|
| 147 |
+
"""Delete all memory for the given user_id via the CRM server."""
|
| 148 |
+
# NOT IMPLEMENTED
|
| 149 |
+
return False
|
llm.py
ADDED
|
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
import time
|
| 4 |
+
|
| 5 |
+
import boto3
|
| 6 |
+
import openai
|
| 7 |
+
from dotenv import load_dotenv
|
| 8 |
+
from model_config import MODEL_TO_PROVIDER
|
| 9 |
+
|
| 10 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 11 |
+
# Load environment variables
|
| 12 |
+
load_dotenv()
|
| 13 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 14 |
+
|
| 15 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 16 |
+
# Configuration
|
| 17 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 18 |
+
MODEL_STRING = "gpt-4.1-mini" # we default on gpt-4.1-mini
|
| 19 |
+
api_key = os.getenv("MODEL_API_KEY")
|
| 20 |
+
client = openai.OpenAI(api_key=api_key)
|
| 21 |
+
bedrock_runtime = boto3.client("bedrock-runtime", region_name="us-west-2")
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 25 |
+
# Model switcher
|
| 26 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 27 |
+
def set_model(model_id: str) -> None:
|
| 28 |
+
global MODEL_STRING
|
| 29 |
+
MODEL_STRING = model_id
|
| 30 |
+
print(f"Model changed to: {model_id}")
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def set_provider(provider: str) -> None:
|
| 34 |
+
global PROVIDER
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 38 |
+
# High-level Chat wrapper
|
| 39 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 40 |
+
def chat(messages, persona):
|
| 41 |
+
provider = MODEL_TO_PROVIDER[MODEL_STRING]
|
| 42 |
+
|
| 43 |
+
if provider == "openai":
|
| 44 |
+
print("Using openai: ", MODEL_STRING)
|
| 45 |
+
system_prompt = None
|
| 46 |
+
if messages and messages[0].get("role") == "system":
|
| 47 |
+
system_prompt = messages[0]["content"]
|
| 48 |
+
messages = messages[1:]
|
| 49 |
+
|
| 50 |
+
t0 = time.time()
|
| 51 |
+
out = client.responses.create(
|
| 52 |
+
model=MODEL_STRING,
|
| 53 |
+
instructions=system_prompt,
|
| 54 |
+
input=messages, # messages=messages
|
| 55 |
+
max_output_tokens=500, # max_tokens=500,
|
| 56 |
+
temperature=0.5,
|
| 57 |
+
store=False, # keeps call stateless
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
dt = time.time() - t0
|
| 61 |
+
|
| 62 |
+
text = out.output_text.strip() # out.choices[0].message.content.strip()
|
| 63 |
+
|
| 64 |
+
tok_out = out.usage.output_tokens
|
| 65 |
+
tok_in = out.usage.input_tokens
|
| 66 |
+
total_tok = (
|
| 67 |
+
tok_out + tok_in
|
| 68 |
+
if tok_out is not None and tok_in is not None
|
| 69 |
+
else len(text.split())
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
return text, dt, total_tok, (total_tok / dt if dt else total_tok)
|
| 73 |
+
elif provider == "anthropic":
|
| 74 |
+
print("Using anthropic: ", MODEL_STRING)
|
| 75 |
+
t0 = time.time()
|
| 76 |
+
|
| 77 |
+
claude_messages = [
|
| 78 |
+
{"role": m["role"], "content": m["content"]} for m in messages
|
| 79 |
+
]
|
| 80 |
+
|
| 81 |
+
response = bedrock_runtime.invoke_model(
|
| 82 |
+
modelId=MODEL_STRING,
|
| 83 |
+
contentType="application/json",
|
| 84 |
+
accept="application/json",
|
| 85 |
+
body=json.dumps(
|
| 86 |
+
{
|
| 87 |
+
"anthropic_version": "bedrock-2023-05-31",
|
| 88 |
+
"messages": claude_messages,
|
| 89 |
+
"max_tokens": 500,
|
| 90 |
+
"temperature": 0.5,
|
| 91 |
+
}
|
| 92 |
+
),
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
dt = time.time() - t0
|
| 96 |
+
body = json.loads(response["body"].read())
|
| 97 |
+
|
| 98 |
+
text = "".join(
|
| 99 |
+
part["text"] for part in body["content"] if part["type"] == "text"
|
| 100 |
+
).strip()
|
| 101 |
+
total_tok = len(text.split())
|
| 102 |
+
|
| 103 |
+
return text, dt, total_tok, (total_tok / dt if dt else total_tok)
|
| 104 |
+
elif provider == "deepseek":
|
| 105 |
+
print("Using deepseek: ", MODEL_STRING)
|
| 106 |
+
t0 = time.time()
|
| 107 |
+
|
| 108 |
+
prompt = messages[-1]["content"]
|
| 109 |
+
|
| 110 |
+
formatted_prompt = (
|
| 111 |
+
f"<ο½beginβofβsentenceο½><ο½Userο½>{prompt}<ο½Assistantο½><think>\n"
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
response = bedrock_runtime.invoke_model(
|
| 115 |
+
modelId=MODEL_STRING,
|
| 116 |
+
contentType="application/json",
|
| 117 |
+
accept="application/json",
|
| 118 |
+
body=json.dumps(
|
| 119 |
+
{
|
| 120 |
+
"prompt": formatted_prompt,
|
| 121 |
+
"max_tokens": 500,
|
| 122 |
+
"temperature": 0.5,
|
| 123 |
+
"top_p": 0.9,
|
| 124 |
+
}
|
| 125 |
+
),
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
dt = time.time() - t0
|
| 129 |
+
body = json.loads(response["body"].read())
|
| 130 |
+
|
| 131 |
+
text = body["choices"][0]["text"].strip()
|
| 132 |
+
total_tok = len(text.split())
|
| 133 |
+
|
| 134 |
+
return text, dt, total_tok, (total_tok / dt if dt else total_tok)
|
| 135 |
+
elif provider == "meta":
|
| 136 |
+
print("Using meta (LLaMA): ", MODEL_STRING)
|
| 137 |
+
t0 = time.time()
|
| 138 |
+
|
| 139 |
+
prompt = messages[-1]["content"]
|
| 140 |
+
|
| 141 |
+
# Format prompt in LLaMA-style instruction format
|
| 142 |
+
formatted_prompt = (
|
| 143 |
+
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n"
|
| 144 |
+
+ prompt.strip()
|
| 145 |
+
+ "\n<|eot_id|>\n<|start_header_id|>assistant<|end_header_id|>\n"
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
response = bedrock_runtime.invoke_model(
|
| 149 |
+
modelId=MODEL_STRING,
|
| 150 |
+
contentType="application/json",
|
| 151 |
+
accept="application/json",
|
| 152 |
+
body=json.dumps(
|
| 153 |
+
{"prompt": formatted_prompt, "max_gen_len": 512, "temperature": 0.5}
|
| 154 |
+
),
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
dt = time.time() - t0
|
| 158 |
+
body = json.loads(response["body"].read())
|
| 159 |
+
text = body.get("generation", "").strip()
|
| 160 |
+
total_tok = len(text.split())
|
| 161 |
+
|
| 162 |
+
return text, dt, total_tok, (total_tok / dt if dt else total_tok)
|
| 163 |
+
elif provider == "mistral":
|
| 164 |
+
print("Using mistral: ", MODEL_STRING)
|
| 165 |
+
t0 = time.time()
|
| 166 |
+
|
| 167 |
+
prompt = messages[-1]["content"]
|
| 168 |
+
formatted_prompt = f"<s>[INST] {prompt} [/INST]"
|
| 169 |
+
|
| 170 |
+
response = bedrock_runtime.invoke_model(
|
| 171 |
+
modelId=MODEL_STRING,
|
| 172 |
+
contentType="application/json",
|
| 173 |
+
accept="application/json",
|
| 174 |
+
body=json.dumps(
|
| 175 |
+
{"prompt": formatted_prompt, "max_tokens": 512, "temperature": 0.5}
|
| 176 |
+
),
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
dt = time.time() - t0
|
| 180 |
+
body = json.loads(response["body"].read())
|
| 181 |
+
|
| 182 |
+
text = body["outputs"][0]["text"].strip()
|
| 183 |
+
total_tok = len(text.split())
|
| 184 |
+
|
| 185 |
+
return text, dt, total_tok, (total_tok / dt if dt else total_tok)
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 189 |
+
# Diagnostics / CLI test
|
| 190 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 191 |
+
def check_credentials():
|
| 192 |
+
required = ["MODEL_API_KEY"]
|
| 193 |
+
missing = [var for var in required if not os.getenv(var)]
|
| 194 |
+
if missing:
|
| 195 |
+
print(f"Missing environment variables: {missing}")
|
| 196 |
+
return False
|
| 197 |
+
return True
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
def test_chat():
|
| 201 |
+
print("Testing chat...")
|
| 202 |
+
try:
|
| 203 |
+
test_messages = [
|
| 204 |
+
{
|
| 205 |
+
"role": "user",
|
| 206 |
+
"content": "Hello! Please respond with just 'Test successful'.",
|
| 207 |
+
}
|
| 208 |
+
]
|
| 209 |
+
text, latency, tokens, tps = chat(test_messages)
|
| 210 |
+
print(f"Test passed! {text} {latency:.2f}s {tokens} β‘ {tps:.1f} tps")
|
| 211 |
+
except Exception as e:
|
| 212 |
+
print(f"Test failed: {e}")
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
if __name__ == "__main__":
|
| 216 |
+
print("running diagnostics")
|
| 217 |
+
if check_credentials():
|
| 218 |
+
test_chat()
|
| 219 |
+
print("\nDone.")
|
model_config.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
PROVIDER_MODEL_MAP = {
|
| 2 |
+
"openai": ["gpt-4.1-mini"],
|
| 3 |
+
"anthropic": [
|
| 4 |
+
"anthropic.claude-3-sonnet-20240229-v1:0",
|
| 5 |
+
"anthropic.claude-3-5-haiku-20241022-v1:0",
|
| 6 |
+
],
|
| 7 |
+
"deepseek": ["us.deepseek.r1-v1:0"],
|
| 8 |
+
"meta": ["meta.llama3-8b-instruct-v1:0", "meta.llama3-70b-instruct-v1:0"],
|
| 9 |
+
"mistral": [
|
| 10 |
+
"mistral.mixtral-8x7b-instruct-v0:1",
|
| 11 |
+
"mistral.mistral-7b-instruct-v0:2",
|
| 12 |
+
],
|
| 13 |
+
}
|
| 14 |
+
# "meta.llama4-maverick-17b-instruct-v1:0" (not currently working)
|
| 15 |
+
|
| 16 |
+
MODEL_TO_PROVIDER = {
|
| 17 |
+
model: provider
|
| 18 |
+
for provider, models in PROVIDER_MODEL_MAP.items()
|
| 19 |
+
for model in models
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
MODEL_CHOICES = [model for models in PROVIDER_MODEL_MAP.values() for model in models]
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
altair
|
| 2 |
+
pandas
|
| 3 |
+
streamlit
|
| 4 |
+
requests
|
| 5 |
+
python-dotenv
|
| 6 |
+
websocket-client
|
| 7 |
+
requests
|
| 8 |
+
openai
|
| 9 |
+
anthropic
|
| 10 |
+
tiktoken
|
| 11 |
+
pydantic
|
| 12 |
+
boto3
|
styles.css
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
/* -- Sidebar width & padding -- */
|
| 2 |
+
section[data-testid="stSidebar"] { width: 230px !important; }
|
| 3 |
+
section[data-testid="stSidebarContent"] { width: 230px !important;
|
| 4 |
+
padding: 0.75rem; }
|
| 5 |
+
|
| 6 |
+
/* -- Title size -- */
|
| 7 |
+
h1 { font-size: 2.1rem !important; margin-bottom: 1rem; }
|
| 8 |
+
|
| 9 |
+
/* -- Ensure long links wrap inside comparison columns -- */
|
| 10 |
+
div.answer { white-space: pre-wrap; overflow-wrap: anywhere; }
|
| 11 |
+
|
| 12 |
+
/* Tighten spacing between comparison columns */
|
| 13 |
+
div[data-testid="column"] {
|
| 14 |
+
padding-left: 0.25rem !important;
|
| 15 |
+
padding-right: 0.25rem !important;
|
| 16 |
+
margin-left: 0 !important;
|
| 17 |
+
margin-right: 0 !important;
|
| 18 |
+
flex-grow: 1;
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
/* Align vertical divider better */
|
| 22 |
+
.vertical-divider {
|
| 23 |
+
height: 100%;
|
| 24 |
+
border-left: 1px solid #ccc;
|
| 25 |
+
margin: 0 0.4rem;
|
| 26 |
+
}
|