Spaces:
Build error
Build error
Emil Ernerfeldt
commited on
Commit
·
23aef68
1
Parent(s):
d63b041
More general support for any HuggingFace dataset, with streaming
Browse files- README.md +10 -0
- main.py +37 -33
- requirements.txt +2 -1
README.md
CHANGED
|
@@ -15,5 +15,15 @@ pip install -r requirements.txt
|
|
| 15 |
python main.py
|
| 16 |
```
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
## Note for the maintainer
|
| 19 |
You can update this repository with the latest changes from https://github.com/rerun-io/rerun_template by running `scripts/template_update.py update --languages python`.
|
|
|
|
| 15 |
python main.py
|
| 16 |
```
|
| 17 |
|
| 18 |
+
Example datasets to explore (use `python main.py --dataset`):
|
| 19 |
+
* `lerobot/aloha_sim_insertion_human`
|
| 20 |
+
* `lerobot/aloha_sim_insertion_scripted`
|
| 21 |
+
* `lerobot/aloha_sim_transfer_cube_human`
|
| 22 |
+
* `lerobot/aloha_sim_transfer_cube_scripted`
|
| 23 |
+
* `lerobot/pusht`
|
| 24 |
+
* `lerobot/xarm_lift_medium`
|
| 25 |
+
* `nateraw/kitti`
|
| 26 |
+
* `sayakpaul/nyu_depth_v2`
|
| 27 |
+
|
| 28 |
## Note for the maintainer
|
| 29 |
You can update this repository with the latest changes from https://github.com/rerun-io/rerun_template by running `scripts/template_update.py update --languages python`.
|
main.py
CHANGED
|
@@ -3,12 +3,37 @@
|
|
| 3 |
from __future__ import annotations
|
| 4 |
|
| 5 |
import argparse
|
|
|
|
|
|
|
| 6 |
|
|
|
|
| 7 |
import rerun as rr
|
| 8 |
from datasets import load_dataset
|
| 9 |
from PIL import Image
|
| 10 |
from tqdm import tqdm
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
def log_dataset_to_rerun(dataset) -> None:
|
| 14 |
# Special time-like columns
|
|
@@ -17,10 +42,7 @@ def log_dataset_to_rerun(dataset) -> None:
|
|
| 17 |
# Ignore these columns
|
| 18 |
IGNORE = {"episode_data_index_from", "episode_data_index_to", "episode_id"}
|
| 19 |
|
| 20 |
-
|
| 21 |
-
for row_nr in tqdm(range(num_rows)):
|
| 22 |
-
row = dataset[row_nr]
|
| 23 |
-
|
| 24 |
# Handle time-like columns first, since they set a state (time is an index in Rerun):
|
| 25 |
for column_name in TIME_LIKE:
|
| 26 |
if column_name in row:
|
|
@@ -32,50 +54,32 @@ def log_dataset_to_rerun(dataset) -> None:
|
|
| 32 |
else:
|
| 33 |
print(f"Unknown time-like column {column_name} with value {cell}")
|
| 34 |
|
| 35 |
-
# Now log actual data columns
|
| 36 |
-
for column_name in
|
| 37 |
if column_name in TIME_LIKE or column_name in IGNORE:
|
| 38 |
continue
|
| 39 |
|
| 40 |
-
|
| 41 |
-
if isinstance(cell, Image.Image):
|
| 42 |
-
rr.log(column_name, rr.Image(cell))
|
| 43 |
-
elif isinstance(cell, list):
|
| 44 |
-
rr.log(column_name, rr.BarChart(cell))
|
| 45 |
-
elif isinstance(cell, float) or isinstance(cell, int):
|
| 46 |
-
rr.log(column_name, rr.Scalar(cell))
|
| 47 |
-
else:
|
| 48 |
-
# TODO(emilk): check if it is a tensor and then log it using rr.Tensor
|
| 49 |
-
rr.log(column_name, rr.TextDocument(str(cell)))
|
| 50 |
|
| 51 |
|
| 52 |
def main():
|
| 53 |
-
#
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
"lerobot/aloha_sim_transfer_cube_human",
|
| 58 |
-
"lerobot/aloha_sim_transfer_cube_scripted",
|
| 59 |
-
"lerobot/pusht",
|
| 60 |
-
"lerobot/xarm_lift_medium",
|
| 61 |
-
]
|
| 62 |
-
|
| 63 |
-
# Create the parser
|
| 64 |
parser = argparse.ArgumentParser(description="Log a HuggingFace dataset to Rerun.")
|
| 65 |
-
parser.add_argument("--dataset",
|
| 66 |
parser.add_argument("--episode-id", default=1, help="Which episode to select")
|
| 67 |
-
|
| 68 |
-
# Parse the arguments
|
| 69 |
args = parser.parse_args()
|
| 70 |
|
| 71 |
print("Loading dataset…")
|
| 72 |
-
dataset = load_dataset(args.dataset, split="train")
|
| 73 |
|
| 74 |
print(f"Selecting episode {args.episode_id}…")
|
| 75 |
-
ds_subset = dataset.filter(lambda frame: frame["episode_id"] == args.episode_id)
|
| 76 |
|
| 77 |
print("Starting Rerun…")
|
| 78 |
-
rr.init("rerun_example_lerobot", spawn=True)
|
| 79 |
|
| 80 |
print("Logging to Rerun…")
|
| 81 |
log_dataset_to_rerun(ds_subset)
|
|
|
|
| 3 |
from __future__ import annotations
|
| 4 |
|
| 5 |
import argparse
|
| 6 |
+
import logging
|
| 7 |
+
from typing import Any
|
| 8 |
|
| 9 |
+
import numpy as np
|
| 10 |
import rerun as rr
|
| 11 |
from datasets import load_dataset
|
| 12 |
from PIL import Image
|
| 13 |
from tqdm import tqdm
|
| 14 |
|
| 15 |
+
logger = logging.getLogger(__name__)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def to_rerun(column_name: str, value: Any) -> Any:
|
| 19 |
+
"""Do our best to interpret the value and convert it to a Rerun-compatible archetype."""
|
| 20 |
+
if isinstance(value, Image.Image):
|
| 21 |
+
if "depth" in column_name:
|
| 22 |
+
return rr.DepthImage(value)
|
| 23 |
+
else:
|
| 24 |
+
return rr.Image(value)
|
| 25 |
+
elif isinstance(value, np.ndarray):
|
| 26 |
+
return rr.Tensor(value)
|
| 27 |
+
elif isinstance(value, list):
|
| 28 |
+
if isinstance(value[0], float):
|
| 29 |
+
return rr.BarChart(value)
|
| 30 |
+
else:
|
| 31 |
+
return rr.TextDocument(str(value)) # Fallback to text
|
| 32 |
+
elif isinstance(value, float) or isinstance(value, int):
|
| 33 |
+
return rr.Scalar(value)
|
| 34 |
+
else:
|
| 35 |
+
return rr.TextDocument(str(value)) # Fallback to text
|
| 36 |
+
|
| 37 |
|
| 38 |
def log_dataset_to_rerun(dataset) -> None:
|
| 39 |
# Special time-like columns
|
|
|
|
| 42 |
# Ignore these columns
|
| 43 |
IGNORE = {"episode_data_index_from", "episode_data_index_to", "episode_id"}
|
| 44 |
|
| 45 |
+
for row in tqdm(dataset):
|
|
|
|
|
|
|
|
|
|
| 46 |
# Handle time-like columns first, since they set a state (time is an index in Rerun):
|
| 47 |
for column_name in TIME_LIKE:
|
| 48 |
if column_name in row:
|
|
|
|
| 54 |
else:
|
| 55 |
print(f"Unknown time-like column {column_name} with value {cell}")
|
| 56 |
|
| 57 |
+
# Now log actual data columns:
|
| 58 |
+
for column_name, cell in row.items():
|
| 59 |
if column_name in TIME_LIKE or column_name in IGNORE:
|
| 60 |
continue
|
| 61 |
|
| 62 |
+
rr.log(column_name, to_rerun(column_name, cell))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
|
| 65 |
def main():
|
| 66 |
+
# Ensure the logging gets written to stderr:
|
| 67 |
+
logging.getLogger().addHandler(logging.StreamHandler())
|
| 68 |
+
logging.getLogger().setLevel(logging.INFO)
|
| 69 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
parser = argparse.ArgumentParser(description="Log a HuggingFace dataset to Rerun.")
|
| 71 |
+
parser.add_argument("--dataset", default="lerobot/pusht", help="The name of the dataset to load")
|
| 72 |
parser.add_argument("--episode-id", default=1, help="Which episode to select")
|
|
|
|
|
|
|
| 73 |
args = parser.parse_args()
|
| 74 |
|
| 75 |
print("Loading dataset…")
|
| 76 |
+
dataset = load_dataset(args.dataset, split="train", streaming=True)
|
| 77 |
|
| 78 |
print(f"Selecting episode {args.episode_id}…")
|
| 79 |
+
ds_subset = dataset.filter(lambda frame: "episode_id" not in frame or frame["episode_id"] == args.episode_id)
|
| 80 |
|
| 81 |
print("Starting Rerun…")
|
| 82 |
+
rr.init(f"rerun_example_lerobot {args.dataset}", spawn=True)
|
| 83 |
|
| 84 |
print("Logging to Rerun…")
|
| 85 |
log_dataset_to_rerun(ds_subset)
|
requirements.txt
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
datasets
|
| 2 |
-
|
|
|
|
| 3 |
rerun-sdk>=0.15.0,<0.16.0
|
| 4 |
tqdm
|
|
|
|
| 1 |
datasets
|
| 2 |
+
h5py
|
| 3 |
+
pillow
|
| 4 |
rerun-sdk>=0.15.0,<0.16.0
|
| 5 |
tqdm
|