from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import gradio as gr model_id = "OSS-Forge/codet5p-770m-vhdl" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForSeq2SeqLM.from_pretrained(model_id) def generate_output(input_text): inputs = tokenizer.encode(input_text, return_tensors='pt') outputs = model.generate( inputs, max_length=256, num_beams=5, early_stopping=True, ) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_text iface = gr.Interface( fn=generate_output, inputs=gr.Textbox(lines=5, placeholder='Insert the English description here...'), outputs=gr.Textbox(), title='VHDL Code Generator (CodeT5+ 770M)', description='Generate VHDL code from an English description using a fine-tuned CodeT5+ model.' ) iface.launch()