Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,155 +1,150 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
import os
|
| 3 |
-
import tempfile
|
| 4 |
-
import time
|
| 5 |
-
import nbformat
|
| 6 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 7 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 8 |
-
from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 9 |
-
from langchain_core.prompts import ChatPromptTemplate
|
| 10 |
-
from langchain.chains import create_retrieval_chain
|
| 11 |
-
from langchain_community.vectorstores import FAISS
|
| 12 |
-
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
| 13 |
-
from dotenv import load_dotenv
|
| 14 |
-
from langchain_core.documents import Document
|
| 15 |
-
|
| 16 |
-
load_dotenv()
|
| 17 |
-
|
| 18 |
-
st.set_page_config(page_title="Chat with Notebooks", page_icon=":books:")
|
| 19 |
-
|
| 20 |
-
st.title("Chat Gemini Document Q&A with Jupyter Notebooks")
|
| 21 |
-
|
| 22 |
-
# Custom prompt template
|
| 23 |
-
custom_context_input = """
|
| 24 |
-
<context>
|
| 25 |
-
{context}
|
| 26 |
-
</context>
|
| 27 |
-
Questions:{input}
|
| 28 |
-
"""
|
| 29 |
-
|
| 30 |
-
# Default prompt template
|
| 31 |
-
default_prompt_template = """
|
| 32 |
-
Answer the questions based on the provided context only.
|
| 33 |
-
Please provide the most accurate response based on the question
|
| 34 |
-
<context>
|
| 35 |
-
{context}
|
| 36 |
-
</context>
|
| 37 |
-
Questions:{input}
|
| 38 |
-
"""
|
| 39 |
-
|
| 40 |
-
def load_notebook(file_path):
|
| 41 |
-
with open(file_path, 'r', encoding='utf-8') as f:
|
| 42 |
-
notebook = nbformat.read(f, as_version=4)
|
| 43 |
-
return notebook
|
| 44 |
-
|
| 45 |
-
def extract_text_from_notebook(notebook):
|
| 46 |
-
text = []
|
| 47 |
-
for cell in notebook.cells:
|
| 48 |
-
if cell.cell_type == 'markdown':
|
| 49 |
-
text.append(cell.source)
|
| 50 |
-
elif cell.cell_type == 'code':
|
| 51 |
-
text.append(cell.source)
|
| 52 |
-
if 'outputs' in cell:
|
| 53 |
-
for output in cell.outputs:
|
| 54 |
-
if output.output_type == 'stream':
|
| 55 |
-
text.append(output.text)
|
| 56 |
-
elif output.output_type == 'execute_result' and 'data' in output:
|
| 57 |
-
text.append(output.data.get('text/plain', ''))
|
| 58 |
-
return "\n".join(text)
|
| 59 |
-
|
| 60 |
-
def vector_embedding(ipynb_files):
|
| 61 |
-
if "vectors" not in st.session_state:
|
| 62 |
-
st.session_state.embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
| 63 |
-
|
| 64 |
-
documents = []
|
| 65 |
-
for ipynb_file in ipynb_files:
|
| 66 |
-
# Save the uploaded file to a temporary location
|
| 67 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".ipynb") as tmp_file:
|
| 68 |
-
tmp_file.write(ipynb_file.getvalue())
|
| 69 |
-
tmp_file_path = tmp_file.name
|
| 70 |
-
|
| 71 |
-
# Load the .ipynb file from the temporary file path
|
| 72 |
-
notebook = load_notebook(tmp_file_path)
|
| 73 |
-
text = extract_text_from_notebook(notebook)
|
| 74 |
-
# Create a Document object instead of using plain text
|
| 75 |
-
documents.append(Document(page_content=text))
|
| 76 |
-
|
| 77 |
-
# Remove the temporary file
|
| 78 |
-
os.remove(tmp_file_path)
|
| 79 |
-
|
| 80 |
-
# Ensure documents are properly segmented or chunked
|
| 81 |
-
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
|
| 82 |
-
try:
|
| 83 |
-
segmented_documents = st.session_state.text_splitter.split_documents(documents)
|
| 84 |
-
st.session_state.final_documents = segmented_documents
|
| 85 |
-
|
| 86 |
-
if st.session_state.final_documents:
|
| 87 |
-
# Embedding using FAISS
|
| 88 |
-
st.session_state.vectors = FAISS.from_documents(st.session_state.final_documents, st.session_state.embeddings)
|
| 89 |
-
st.success("Document embedding is completed!")
|
| 90 |
-
else:
|
| 91 |
-
st.warning("No documents found to embed.")
|
| 92 |
-
|
| 93 |
-
except Exception as e:
|
| 94 |
-
st.error(f"Error splitting or embedding documents: {str(e)}")
|
| 95 |
-
st.session_state.final_documents = [] # Handle empty documents or retry
|
| 96 |
-
|
| 97 |
-
# Define model options for Gemini
|
| 98 |
-
model_options = [
|
| 99 |
-
"
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
"
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
st.markdown("
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
st.
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
# With a Streamlit expander
|
| 151 |
-
with st.expander("Document Similarity Search"):
|
| 152 |
-
# Find the relevant chunks
|
| 153 |
-
for i, doc in enumerate(response["context"]):
|
| 154 |
-
st.write(doc.page_content)
|
| 155 |
st.write("--------------------------------")
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import os
|
| 3 |
+
import tempfile
|
| 4 |
+
import time
|
| 5 |
+
import nbformat
|
| 6 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 8 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 9 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 10 |
+
from langchain.chains import create_retrieval_chain
|
| 11 |
+
from langchain_community.vectorstores import FAISS
|
| 12 |
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
| 13 |
+
from dotenv import load_dotenv
|
| 14 |
+
from langchain_core.documents import Document
|
| 15 |
+
|
| 16 |
+
load_dotenv()
|
| 17 |
+
|
| 18 |
+
st.set_page_config(page_title="Chat with Notebooks", page_icon=":books:")
|
| 19 |
+
|
| 20 |
+
st.title("Chat Gemini Document Q&A with Jupyter Notebooks")
|
| 21 |
+
|
| 22 |
+
# Custom prompt template
|
| 23 |
+
custom_context_input = """
|
| 24 |
+
<context>
|
| 25 |
+
{context}
|
| 26 |
+
</context>
|
| 27 |
+
Questions:{input}
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
# Default prompt template
|
| 31 |
+
default_prompt_template = """
|
| 32 |
+
Answer the questions based on the provided context only.
|
| 33 |
+
Please provide the most accurate response based on the question
|
| 34 |
+
<context>
|
| 35 |
+
{context}
|
| 36 |
+
</context>
|
| 37 |
+
Questions:{input}
|
| 38 |
+
"""
|
| 39 |
+
|
| 40 |
+
def load_notebook(file_path):
|
| 41 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
| 42 |
+
notebook = nbformat.read(f, as_version=4)
|
| 43 |
+
return notebook
|
| 44 |
+
|
| 45 |
+
def extract_text_from_notebook(notebook):
|
| 46 |
+
text = []
|
| 47 |
+
for cell in notebook.cells:
|
| 48 |
+
if cell.cell_type == 'markdown':
|
| 49 |
+
text.append(cell.source)
|
| 50 |
+
elif cell.cell_type == 'code':
|
| 51 |
+
text.append(cell.source)
|
| 52 |
+
if 'outputs' in cell:
|
| 53 |
+
for output in cell.outputs:
|
| 54 |
+
if output.output_type == 'stream':
|
| 55 |
+
text.append(output.text)
|
| 56 |
+
elif output.output_type == 'execute_result' and 'data' in output:
|
| 57 |
+
text.append(output.data.get('text/plain', ''))
|
| 58 |
+
return "\n".join(text)
|
| 59 |
+
|
| 60 |
+
def vector_embedding(ipynb_files):
|
| 61 |
+
if "vectors" not in st.session_state:
|
| 62 |
+
st.session_state.embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
| 63 |
+
|
| 64 |
+
documents = []
|
| 65 |
+
for ipynb_file in ipynb_files:
|
| 66 |
+
# Save the uploaded file to a temporary location
|
| 67 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".ipynb") as tmp_file:
|
| 68 |
+
tmp_file.write(ipynb_file.getvalue())
|
| 69 |
+
tmp_file_path = tmp_file.name
|
| 70 |
+
|
| 71 |
+
# Load the .ipynb file from the temporary file path
|
| 72 |
+
notebook = load_notebook(tmp_file_path)
|
| 73 |
+
text = extract_text_from_notebook(notebook)
|
| 74 |
+
# Create a Document object instead of using plain text
|
| 75 |
+
documents.append(Document(page_content=text))
|
| 76 |
+
|
| 77 |
+
# Remove the temporary file
|
| 78 |
+
os.remove(tmp_file_path)
|
| 79 |
+
|
| 80 |
+
# Ensure documents are properly segmented or chunked
|
| 81 |
+
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
|
| 82 |
+
try:
|
| 83 |
+
segmented_documents = st.session_state.text_splitter.split_documents(documents)
|
| 84 |
+
st.session_state.final_documents = segmented_documents
|
| 85 |
+
|
| 86 |
+
if st.session_state.final_documents:
|
| 87 |
+
# Embedding using FAISS
|
| 88 |
+
st.session_state.vectors = FAISS.from_documents(st.session_state.final_documents, st.session_state.embeddings)
|
| 89 |
+
st.success("Document embedding is completed!")
|
| 90 |
+
else:
|
| 91 |
+
st.warning("No documents found to embed.")
|
| 92 |
+
|
| 93 |
+
except Exception as e:
|
| 94 |
+
st.error(f"Error splitting or embedding documents: {str(e)}")
|
| 95 |
+
st.session_state.final_documents = [] # Handle empty documents or retry
|
| 96 |
+
|
| 97 |
+
# Define model options for Gemini
|
| 98 |
+
model_options = [
|
| 99 |
+
"gemini-1.5-flash",
|
| 100 |
+
"gemini-1.5-pro",
|
| 101 |
+
"gemini-1.0-pro"
|
| 102 |
+
]
|
| 103 |
+
|
| 104 |
+
# Sidebar elements
|
| 105 |
+
with st.sidebar:
|
| 106 |
+
st.header("Configuration")
|
| 107 |
+
st.markdown("Enter your API key below:")
|
| 108 |
+
google_api_key = st.text_input("Enter your Google API Key", type="password", help="Get your API key from [Google AI Studio](https://aistudio.google.com/app/apikey)")
|
| 109 |
+
selected_model = st.selectbox("Select Gemini Model", model_options)
|
| 110 |
+
os.environ["GOOGLE_API_KEY"] = str(google_api_key)
|
| 111 |
+
|
| 112 |
+
st.markdown("Upload your .ipynb files:")
|
| 113 |
+
uploaded_files = st.file_uploader("Choose .ipynb files", accept_multiple_files=True, type="ipynb")
|
| 114 |
+
|
| 115 |
+
# Custom prompt text areas
|
| 116 |
+
st.markdown("Enter a custom prompt template (optional):")
|
| 117 |
+
custom_prompt_template = st.text_area("Custom Prompt Template", placeholder="Enter your custom prompt here...")
|
| 118 |
+
|
| 119 |
+
if st.button("Start Document Embedding"):
|
| 120 |
+
if uploaded_files:
|
| 121 |
+
vector_embedding(uploaded_files)
|
| 122 |
+
st.success("Vector Store DB is Ready")
|
| 123 |
+
else:
|
| 124 |
+
st.warning("Please upload at least one .ipynb file.")
|
| 125 |
+
|
| 126 |
+
# Main section for question input and results
|
| 127 |
+
prompt1 = st.text_area("Enter Your Question From Documents")
|
| 128 |
+
|
| 129 |
+
if prompt1 and "vectors" in st.session_state:
|
| 130 |
+
if custom_prompt_template:
|
| 131 |
+
custom_prompt = custom_prompt_template + custom_context_input
|
| 132 |
+
prompt = ChatPromptTemplate.from_template(custom_prompt)
|
| 133 |
+
else:
|
| 134 |
+
prompt = ChatPromptTemplate.from_template(default_prompt_template)
|
| 135 |
+
|
| 136 |
+
llm = ChatGoogleGenerativeAI(model=selected_model, temperature=0.3)
|
| 137 |
+
document_chain = create_stuff_documents_chain(llm, prompt)
|
| 138 |
+
retriever = st.session_state.vectors.as_retriever()
|
| 139 |
+
retrieval_chain = create_retrieval_chain(retriever, document_chain)
|
| 140 |
+
start = time.process_time()
|
| 141 |
+
response = retrieval_chain.invoke({'input': prompt1})
|
| 142 |
+
st.write("Response time:", time.process_time() - start)
|
| 143 |
+
st.write(response['answer'])
|
| 144 |
+
|
| 145 |
+
# With a Streamlit expander
|
| 146 |
+
with st.expander("Document Similarity Search"):
|
| 147 |
+
# Find the relevant chunks
|
| 148 |
+
for i, doc in enumerate(response["context"]):
|
| 149 |
+
st.write(doc.page_content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
st.write("--------------------------------")
|