Spaces:
Runtime error
Runtime error
File size: 31,867 Bytes
898b100 840481f 898b100 840481f 898b100 840481f 898b100 840481f 898b100 840481f 898b100 fc38cab 898b100 840481f 898b100 840481f 898b100 840481f 898b100 840481f 898b100 840481f 898b100 32a5366 898b100 840481f 32a5366 898b100 840481f 898b100 840481f 898b100 840481f 898b100 840481f 898b100 840481f 898b100 840481f 898b100 840481f 898b100 840481f 898b100 fc38cab 898b100 840481f 898b100 840481f 898b100 840481f 898b100 840481f 898b100 840481f 898b100 840481f 898b100 32a5366 898b100 7afb56c 898b100 7afb56c 840481f 32a5366 898b100 840481f 32a5366 898b100 840481f 898b100 32a5366 898b100 32a5366 898b100 32a5366 898b100 32a5366 898b100 32a5366 898b100 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 |
import click
import librosa
import numpy as np
import pyloudnorm as pyln
import torch
import torchaudio
from pathlib import Path
from tqdm import tqdm
from torch.amp import autocast
from rift_svc import DiT, RF
from rift_svc.feature_extractors import HubertModelWithFinalProj, RMSExtractor, get_mel_spectrogram
from rift_svc.nsf_hifigan import NsfHifiGAN
from rift_svc.rmvpe import RMVPE
from rift_svc.utils import linear_interpolate_tensor, post_process_f0, f0_ensemble, f0_ensemble_light, get_f0_pw, get_f0_pm
from slicer import Slicer
torch.set_grad_enabled(False)
def extract_state_dict(ckpt):
state_dict = ckpt['state_dict']
new_state_dict = {}
for k, v in state_dict.items():
if k.startswith('model.'):
new_k = k.replace('model.', '')
new_state_dict[new_k] = v
spk2idx = ckpt['hyper_parameters']['cfg']['spk2idx']
model_cfg = ckpt['hyper_parameters']['cfg']['model']
dataset_cfg = ckpt['hyper_parameters']['cfg']['dataset']
return new_state_dict, spk2idx, model_cfg, dataset_cfg
def load_models(model_path, device, use_fp16=True):
"""Load all required models and return them"""
click.echo("Loading models...")
# Load the conversion model
ckpt = torch.load(model_path, map_location='cpu')
state_dict, spk2idx, dit_cfg, dataset_cfg = extract_state_dict(ckpt)
transformer = DiT(num_speaker=len(spk2idx), **dit_cfg)
svc_model = RF(transformer=transformer)
svc_model.load_state_dict(state_dict)
svc_model = svc_model.to(device)
# Convert to half precision (float16) if specified and using CUDA
if use_fp16 and device != 'cpu':
svc_model = svc_model.half()
svc_model.eval()
# Load additional models
vocoder = NsfHifiGAN('pretrained/nsf_hifigan_44.1k_hop512_128bin_2024.02/model.ckpt').to(device)
rmvpe = RMVPE(model_path="pretrained/rmvpe/model.pt", hop_length=160, device=device)
hubert = HubertModelWithFinalProj.from_pretrained("pretrained/content-vec-best").to(device)
rms_extractor = RMSExtractor().to(device)
# Convert additional models to half precision if specified and using CUDA
if use_fp16 and device != 'cpu':
vocoder = vocoder.half()
hubert = hubert.half()
rms_extractor = rms_extractor.half()
# RMVPE model is handled separately as it may have custom implementation
return svc_model, vocoder, rmvpe, hubert, rms_extractor, spk2idx, dataset_cfg
def load_audio(file_path, target_sr):
"""Load and preprocess audio file"""
click.echo("Loading audio...")
audio, sr = torchaudio.load(file_path)
if sr != target_sr:
audio = torchaudio.functional.resample(audio, sr, target_sr)
if len(audio.shape) > 1:
audio = audio.mean(dim=0, keepdim=True)
return audio.numpy().squeeze()
def apply_fade(audio, fade_samples, fade_in=True):
"""Apply fade in/out using half of a Hanning window"""
fade_window = np.hanning(fade_samples * 2)
if fade_in:
fade_curve = fade_window[:fade_samples]
else:
fade_curve = fade_window[fade_samples:]
audio[:fade_samples] *= fade_curve
return audio
def extract_features(audio_segment, sample_rate, hop_length, rmvpe, hubert, rms_extractor,
device, key_shift=0, ds_cfg_strength=0.0, cvec_downsample_rate=2, target_loudness=-18.0,
robust_f0=0, use_fp16=True):
"""Extract all required features from an audio segment"""
# Normalize input segment
meter = pyln.Meter(sample_rate)
original_loudness = meter.integrated_loudness(audio_segment)
normalized_audio = pyln.normalize.loudness(audio_segment, original_loudness, target_loudness)
# Handle potential clipping
max_amp = np.max(np.abs(normalized_audio))
if max_amp > 1.0:
normalized_audio = normalized_audio * (0.99 / max_amp)
audio_tensor = torch.from_numpy(normalized_audio).float().unsqueeze(0).to(device)
audio_16khz = torch.from_numpy(librosa.resample(normalized_audio, orig_sr=sample_rate, target_sr=16000)).float().unsqueeze(0).to(device)
# Convert to half precision if specified and using CUDA
if use_fp16 and device.type != 'cpu':
audio_tensor = audio_tensor.half()
audio_16khz = audio_16khz.half()
# Extract mel spectrogram
mel = get_mel_spectrogram(
audio_tensor,
sampling_rate=sample_rate,
n_fft=2048,
num_mels=128,
hop_size=512,
win_size=2048,
fmin=40,
fmax=16000
).transpose(1, 2)
# Extract content vector
device_type = 'cuda' if device.type == 'cuda' else 'cpu'
with autocast(device_type=device_type, enabled=use_fp16):
cvec = hubert(audio_16khz)["last_hidden_state"].squeeze(0)
cvec = linear_interpolate_tensor(cvec, mel.shape[1])[None, :]
# Create bad_cvec (downsampled) for classifier-free guidance
if ds_cfg_strength > 0:
cvec_ds = cvec.clone()
# Downsample and then interpolate back, similar to dataset.py
cvec_ds = cvec_ds[0, ::2, :] # Take every other frame
cvec_ds = linear_interpolate_tensor(cvec_ds, cvec_ds.shape[0]//cvec_downsample_rate)
cvec_ds = linear_interpolate_tensor(cvec_ds, mel.shape[1])[None, :]
else:
cvec_ds = None
# Extract f0
if robust_f0 > 0:
# Parameters for F0 extraction
time_step = hop_length / sample_rate
f0_min = 40
f0_max = 1100
# Extract F0 using multiple methods
with autocast(device_type=device_type, enabled=use_fp16):
rmvpe_f0 = rmvpe.infer_from_audio(audio_tensor, sample_rate=sample_rate, device=device)
rmvpe_f0 = post_process_f0(rmvpe_f0, sample_rate, hop_length, mel.shape[1], silence_front=0.0, cut_last=False)
pw_f0 = get_f0_pw(normalized_audio, sample_rate, time_step, f0_min, f0_max)
pmac_f0 = get_f0_pm(normalized_audio, sample_rate, time_step, f0_min, f0_max)
if robust_f0 == 1:
# Level 1: Light ensemble that preserves expressiveness
with autocast(device_type=device_type, enabled=use_fp16):
rms_np = rms_extractor(audio_tensor).squeeze().cpu().numpy()
f0 = f0_ensemble_light(rmvpe_f0, pw_f0, pmac_f0, rms=rms_np)
else:
# Level 2: Strong ensemble with more filtering
f0 = f0_ensemble(rmvpe_f0, pw_f0, pmac_f0)
else:
# Level 0: Use only RMVPE for F0 extraction (original method)
device_type = 'cuda' if device.type == 'cuda' else 'cpu'
with autocast(device_type=device_type, enabled=use_fp16):
f0 = rmvpe.infer_from_audio(audio_tensor, sample_rate=sample_rate, device=device)
f0 = post_process_f0(f0, sample_rate, hop_length, mel.shape[1], silence_front=0.0, cut_last=False)
if key_shift != 0:
f0 = f0 * 2 ** (key_shift / 12)
f0 = torch.from_numpy(f0).float().to(device)[None, :]
# Extract RMS
rms = rms_extractor(audio_tensor)
return mel, cvec, cvec_ds, f0, rms, original_loudness
def run_inference(
model, mel, cvec, f0, rms, cvec_ds, spk_id,
infer_steps, ds_cfg_strength, spk_cfg_strength,
skip_cfg_strength, cfg_skip_layers, cfg_rescale,
sliced_inference=False, use_fp16=True, frame_lengths=None
):
"""Run the actual inference through the model"""
device_type = 'cuda' if mel.device.type == 'cuda' else 'cpu'
if frame_lengths is not None:
# Use batch inference with frame lengths
with autocast(device_type=device_type, enabled=use_fp16):
mel_out, _ = model.sample(
src_mel=mel,
spk_id=spk_id,
f0=f0,
rms=rms,
cvec=cvec,
steps=infer_steps,
bad_cvec=cvec_ds,
ds_cfg_strength=ds_cfg_strength,
spk_cfg_strength=spk_cfg_strength,
skip_cfg_strength=skip_cfg_strength,
cfg_skip_layers=cfg_skip_layers,
cfg_rescale=cfg_rescale,
frame_len=frame_lengths,
)
return mel_out
elif sliced_inference:
# Use sliced inference for long segments
sliced_len = 256
mel_crossfade_len = 8 # Number of frames to crossfade in mel domain
# If the segment is shorter than one slice, just process it directly
if mel.shape[1] <= sliced_len:
with autocast(device_type=device_type, enabled=use_fp16):
mel_out, _ = model.sample(
src_mel=mel,
spk_id=spk_id,
f0=f0,
rms=rms,
cvec=cvec,
steps=infer_steps,
bad_cvec=cvec_ds,
ds_cfg_strength=ds_cfg_strength,
spk_cfg_strength=spk_cfg_strength,
skip_cfg_strength=skip_cfg_strength,
cfg_skip_layers=cfg_skip_layers,
cfg_rescale=cfg_rescale,
)
return mel_out
# Create a tensor to hold the full output with crossfading
full_mel_out = torch.zeros_like(mel)
# Process each slice
for i in range(0, mel.shape[1], sliced_len - mel_crossfade_len):
# Determine slice boundaries
start_idx = i
end_idx = min(i + sliced_len, mel.shape[1])
# Skip if we're at the end
if start_idx >= mel.shape[1]:
break
# Extract slices for this window
mel_slice = mel[:, start_idx:end_idx, :]
cvec_slice = cvec[:, start_idx:end_idx, :]
f0_slice = f0[:, start_idx:end_idx]
rms_slice = rms[:, start_idx:end_idx]
# Slice the bad_cvec if it exists
cvec_ds_slice = None
if cvec_ds is not None:
cvec_ds_slice = cvec_ds[:, start_idx:end_idx, :]
# Process with model using mixed precision if enabled
with autocast(device_type=device_type, enabled=use_fp16):
mel_out_slice, _ = model.sample(
src_mel=mel_slice,
spk_id=spk_id,
f0=f0_slice,
rms=rms_slice,
cvec=cvec_slice,
steps=infer_steps,
bad_cvec=cvec_ds_slice,
ds_cfg_strength=ds_cfg_strength,
spk_cfg_strength=spk_cfg_strength,
skip_cfg_strength=skip_cfg_strength,
cfg_skip_layers=cfg_skip_layers,
cfg_rescale=cfg_rescale,
)
# Create crossfade weights
slice_len = end_idx - start_idx
# Apply different strategies depending on position
if i == 0: # First slice
# No crossfade at the beginning
weights = torch.ones((1, slice_len, 1), device=mel.device)
if i + sliced_len < mel.shape[1]: # If not the last slice too
# Fade out at the end - use the minimum of slice_len and mel_crossfade_len
actual_crossfade_len = min(mel_crossfade_len, slice_len)
if actual_crossfade_len > 0: # Only apply if we have space
fade_out = torch.linspace(1, 0, actual_crossfade_len, device=mel.device)
weights[:, -actual_crossfade_len:, :] = fade_out.view(1, -1, 1)
elif end_idx >= mel.shape[1]: # Last slice
# Fade in at the beginning - use the minimum of slice_len and mel_crossfade_len
weights = torch.ones((1, slice_len, 1), device=mel.device)
actual_crossfade_len = min(mel_crossfade_len, slice_len)
if actual_crossfade_len > 0: # Only apply if we have space
fade_in = torch.linspace(0, 1, actual_crossfade_len, device=mel.device)
weights[:, :actual_crossfade_len, :] = fade_in.view(1, -1, 1)
else: # Middle slice
# Crossfade both ends
weights = torch.ones((1, slice_len, 1), device=mel.device)
# Fade in at the beginning
if mel_crossfade_len > 0: # Only apply if we have space
fade_in = torch.linspace(0, 1, mel_crossfade_len, device=mel.device)
weights[:, :mel_crossfade_len, :] = fade_in.view(1, -1, 1)
# Fade out at the end
if mel_crossfade_len > 0: # Only apply if we have space
fade_out = torch.linspace(1, 0, mel_crossfade_len, device=mel.device)
weights[:, -mel_crossfade_len:, :] = fade_out.view(1, -1, 1)
# Apply weighted update to the output
full_mel_out[:, start_idx:end_idx, :] += weights * mel_out_slice
# Return the full crossfaded output
mel_out = full_mel_out
else:
# Process the entire segment at once with mixed precision if enabled
with autocast(device_type=device_type, enabled=use_fp16):
mel_out, _ = model.sample(
src_mel=mel,
spk_id=spk_id,
f0=f0,
rms=rms,
cvec=cvec,
steps=infer_steps,
bad_cvec=cvec_ds,
ds_cfg_strength=ds_cfg_strength,
spk_cfg_strength=spk_cfg_strength,
skip_cfg_strength=skip_cfg_strength,
cfg_skip_layers=cfg_skip_layers,
cfg_rescale=cfg_rescale,
)
return mel_out
def generate_audio(vocoder, mel_out, f0, original_loudness=None, restore_loudness=True, use_fp16=True):
"""Generate audio from mel spectrogram using vocoder"""
# Use mixed precision for vocoder inference if enabled
device_type = 'cuda' if mel_out.device.type == 'cuda' else 'cpu'
with autocast(device_type=device_type, enabled=use_fp16):
audio_out = vocoder(mel_out.transpose(1, 2), f0)
audio_out = audio_out.squeeze().cpu().numpy()
if restore_loudness and original_loudness is not None:
# Restore original loudness
meter = pyln.Meter(44100)
audio_out_loudness = meter.integrated_loudness(audio_out)
audio_out = pyln.normalize.loudness(audio_out, audio_out_loudness, original_loudness)
# Handle clipping
max_amp = np.max(np.abs(audio_out))
if max_amp > 1.0:
audio_out = audio_out * (0.99 / max_amp)
return audio_out
def process_segment(
audio_segment,
svc_model, vocoder, rmvpe, hubert, rms_extractor,
speaker_id, sample_rate, hop_length, device,
key_shift=0,
infer_steps=32,
ds_cfg_strength=0.0,
spk_cfg_strength=0.0,
skip_cfg_strength=0.0,
cfg_skip_layers=None,
cfg_rescale=0.7,
cvec_downsample_rate=2,
target_loudness=-18.0,
restore_loudness=True,
sliced_inference=False,
robust_f0=0,
use_fp16=True
):
"""Process a single audio segment and return the converted audio"""
# Extract features
mel, cvec, cvec_ds, f0, rms, original_loudness = extract_features(
audio_segment, sample_rate, hop_length, rmvpe, hubert, rms_extractor,
device, key_shift, ds_cfg_strength, cvec_downsample_rate, target_loudness,
robust_f0, use_fp16
)
# Prepare speaker ID - convert to tensor
spk_id = torch.LongTensor([speaker_id]).to(device)
# Run inference to generate output mel spectrogram
mel_out = run_inference(
model=svc_model,
mel=mel,
cvec=cvec,
f0=f0,
rms=rms,
cvec_ds=cvec_ds,
spk_id=spk_id,
infer_steps=infer_steps,
ds_cfg_strength=ds_cfg_strength,
spk_cfg_strength=spk_cfg_strength,
skip_cfg_strength=skip_cfg_strength,
cfg_skip_layers=cfg_skip_layers,
cfg_rescale=cfg_rescale,
sliced_inference=sliced_inference,
use_fp16=use_fp16
)
# Generate audio
audio_out = generate_audio(
vocoder, mel_out, f0,
original_loudness if restore_loudness else None,
restore_loudness, use_fp16
)
return audio_out
def pad_tensor_to_length(tensor, length):
"""Pad a tensor to the specified length along the sequence dimension (dim=1)"""
curr_len = tensor.shape[1]
if curr_len >= length:
return tensor
pad_len = length - curr_len
if tensor.dim() == 2:
padding = (0, pad_len)
elif tensor.dim() == 3:
padding = (0, 0, 0, pad_len)
else:
raise ValueError(f"Unsupported tensor dimension: {tensor.dim()}")
padded = torch.nn.functional.pad(tensor, padding, "constant", 0)
return padded
def batch_process_segments(
segments_with_pos,
svc_model, vocoder, rmvpe, hubert, rms_extractor,
speaker_id, sample_rate, hop_length, device,
key_shift=0,
infer_steps=32,
ds_cfg_strength=0.0,
spk_cfg_strength=0.0,
skip_cfg_strength=0.0,
cfg_skip_layers=None,
cfg_rescale=0.7,
cvec_downsample_rate=2,
target_loudness=-18.0,
restore_loudness=True,
robust_f0=0,
use_fp16=True,
batch_size=1,
gr_progress=None,
progress_desc=None
):
"""Process audio segments in batches for faster inference"""
if batch_size <= 1:
results = []
for i, (start_sample, chunk) in enumerate(tqdm(segments_with_pos, desc="Processing segments")):
if gr_progress is not None:
gr_progress(0.2 + (0.7 * (i / len(segments_with_pos))), desc=progress_desc.format(i+1, len(segments_with_pos)))
audio_out = process_segment(
chunk, svc_model, vocoder, rmvpe, hubert, rms_extractor,
speaker_id, sample_rate, hop_length, device,
key_shift, infer_steps, ds_cfg_strength, spk_cfg_strength,
skip_cfg_strength, cfg_skip_layers, cfg_rescale,
cvec_downsample_rate, target_loudness, restore_loudness,
robust_f0, use_fp16
)
results.append((start_sample, audio_out, len(chunk)))
return results
sorted_with_idx = sorted(enumerate(segments_with_pos), key=lambda x: len(x[1][1]))
sorted_segments = []
original_indices = []
for orig_idx, (pos, chunk) in sorted_with_idx:
original_indices.append(orig_idx)
sorted_segments.append((pos, chunk))
batched_segments = [sorted_segments[i:i + batch_size] for i in range(0, len(sorted_segments), batch_size)]
all_results = []
for batch_idx, batch in enumerate(tqdm(batched_segments, desc="Processing batches")):
if gr_progress is not None:
gr_progress(
0.2 + (0.7 * (batch_idx / len(batched_segments))),
desc=progress_desc.format(batch_idx+1, len(batched_segments)))
batch_start_samples = [pos for pos, _ in batch]
batch_chunks = [chunk for _, chunk in batch]
batch_lengths = [len(chunk) for chunk in batch_chunks]
batch_features = []
for chunk in batch_chunks:
mel, cvec, cvec_ds, f0, rms, original_loudness = extract_features(
chunk, sample_rate, hop_length, rmvpe, hubert, rms_extractor,
device, key_shift, ds_cfg_strength, cvec_downsample_rate, target_loudness,
robust_f0, use_fp16
)
batch_features.append({
'mel': mel,
'cvec': cvec,
'cvec_ds': cvec_ds,
'f0': f0,
'rms': rms,
'original_loudness': original_loudness,
'length': mel.shape[1]
})
max_length = max(feat['length'] for feat in batch_features)
padded_mels = []
padded_cvecs = []
padded_f0s = []
padded_rmss = []
frame_lengths = []
original_loudness_values = []
if ds_cfg_strength > 0:
padded_cvec_ds = []
for feat in batch_features:
curr_len = feat['length']
frame_lengths.append(curr_len)
padded_mels.append(pad_tensor_to_length(feat['mel'], max_length))
padded_cvecs.append(pad_tensor_to_length(feat['cvec'], max_length))
padded_f0s.append(pad_tensor_to_length(feat['f0'], max_length))
padded_rmss.append(pad_tensor_to_length(feat['rms'], max_length))
if ds_cfg_strength > 0:
padded_cvec_ds.append(pad_tensor_to_length(feat['cvec_ds'], max_length))
original_loudness_values.append(feat['original_loudness'])
batched_mel = torch.cat(padded_mels, dim=0)
batched_cvec = torch.cat(padded_cvecs, dim=0)
batched_f0 = torch.cat(padded_f0s, dim=0)
batched_rms = torch.cat(padded_rmss, dim=0)
if ds_cfg_strength > 0:
batched_cvec_ds = torch.cat(padded_cvec_ds, dim=0)
else:
batched_cvec_ds = None
frame_lengths = torch.tensor(frame_lengths, device=device)
batch_spk_id = torch.LongTensor([speaker_id] * len(batch)).to(device)
with torch.no_grad():
mel_out = run_inference(
model=svc_model,
mel=batched_mel,
cvec=batched_cvec,
f0=batched_f0,
rms=batched_rms,
cvec_ds=batched_cvec_ds,
spk_id=batch_spk_id,
infer_steps=infer_steps,
ds_cfg_strength=ds_cfg_strength,
spk_cfg_strength=spk_cfg_strength,
skip_cfg_strength=skip_cfg_strength,
cfg_skip_layers=cfg_skip_layers,
cfg_rescale=cfg_rescale,
frame_lengths=frame_lengths,
use_fp16=use_fp16
)
with autocast(device_type='cuda' if device.type == 'cuda' else 'cpu', enabled=use_fp16):
audio_out = vocoder(mel_out.transpose(1, 2), batched_f0)
for i in range(len(batch)):
expected_audio_length = batch_lengths[i]
curr_audio = audio_out[i].squeeze().cpu().numpy()
if len(curr_audio) > expected_audio_length:
curr_audio = curr_audio[:expected_audio_length]
elif len(curr_audio) < expected_audio_length:
curr_audio = np.pad(curr_audio, (0, expected_audio_length - len(curr_audio)), 'constant')
if restore_loudness:
meter = pyln.Meter(44100, block_size=0.1)
curr_loudness = meter.integrated_loudness(curr_audio)
curr_audio = pyln.normalize.loudness(curr_audio, curr_loudness, original_loudness_values[i])
max_amp = np.max(np.abs(curr_audio))
if max_amp > 1.0:
curr_audio = curr_audio * (0.99 / max_amp)
expected_length = batch_lengths[i]
all_results.append((batch_idx, i, batch_start_samples[i], curr_audio, expected_length, original_indices[batch_size * batch_idx + i]))
all_results.sort(key=lambda x: x[5])
return [(pos, audio, length) for _, _, pos, audio, length, _ in all_results]
@click.command()
@click.option('--model', type=click.Path(exists=True), required=True, help='Path to model checkpoint')
@click.option('--input', type=click.Path(exists=True), required=True, help='Input audio file')
@click.option('--output', type=click.Path(), required=True, help='Output audio file')
@click.option('--speaker', type=str, required=True, help='Target speaker')
@click.option('--key-shift', type=int, default=0, help='Pitch shift in semitones')
@click.option('--device', type=str, default=None, help='Device to use (cuda/cpu)')
@click.option('--infer-steps', type=int, default=32, help='Number of inference steps')
@click.option('--ds-cfg-strength', type=float, default=0.0, help='Downsampled content vector guidance strength')
@click.option('--spk-cfg-strength', type=float, default=0.0, help='Speaker guidance strength')
@click.option('--skip-cfg-strength', type=float, default=0.0, help='Skip layer guidance strength')
@click.option('--cfg-skip-layers', type=int, default=None, help='Layer to skip for classifier-free guidance')
@click.option('--cfg-rescale', type=float, default=0.7, help='Classifier-free guidance rescale factor')
@click.option('--cvec-downsample-rate', type=int, default=2, help='Downsampling rate for bad_cvec creation')
@click.option('--target-loudness', type=float, default=-18.0, help='Target loudness in LUFS for normalization')
@click.option('--restore-loudness', default=True, help='Restore loudness to original')
@click.option('--fade-duration', type=float, default=20.0, help='Fade duration in milliseconds')
@click.option('--sliced-inference', is_flag=True, default=False, help='Use sliced inference for processing long segments')
@click.option('--robust-f0', type=int, default=0, help='Level of robust f0 filtering (0=none, 1=light, 2=aggressive)')
@click.option('--slicer-threshold', type=float, default=-30.0, help='Threshold for audio slicing in dB')
@click.option('--slicer-min-length', type=int, default=3000, help='Minimum length of audio segments in milliseconds')
@click.option('--slicer-min-interval', type=int, default=100, help='Minimum interval between audio segments in milliseconds')
@click.option('--slicer-hop-size', type=int, default=10, help='Hop size for audio slicing in milliseconds')
@click.option('--slicer-max-sil-kept', type=int, default=200, help='Maximum silence kept in milliseconds')
@click.option('--use-fp16', is_flag=True, default=True, help='Use float16 precision for faster inference')
@click.option('--batch-size', type=int, default=1, help='Batch size for parallel inference')
def main(
model,
input,
output,
speaker,
key_shift,
device,
infer_steps,
ds_cfg_strength,
spk_cfg_strength,
skip_cfg_strength,
cfg_skip_layers,
cfg_rescale,
cvec_downsample_rate,
target_loudness,
restore_loudness,
fade_duration,
sliced_inference,
robust_f0,
slicer_threshold,
slicer_min_length,
slicer_min_interval,
slicer_hop_size,
slicer_max_sil_kept,
use_fp16,
batch_size
):
"""Convert the voice in an audio file to a target speaker."""
# Setup device
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
device = torch.device(device)
# Load models
svc_model, vocoder, rmvpe, hubert, rms_extractor, spk2idx, dataset_cfg = load_models(model, device, use_fp16)
try:
speaker_id = spk2idx[speaker]
except KeyError:
raise ValueError(f"Speaker {speaker} not found in the model's speaker list, valid speakers are {spk2idx.keys()}")
# Get config from loaded model
hop_length = 512
sample_rate = 44100
# Load audio
audio = load_audio(input, sample_rate)
# Initialize Slicer
slicer = Slicer(
sr=sample_rate,
threshold=slicer_threshold,
min_length=slicer_min_length,
min_interval=slicer_min_interval,
hop_size=slicer_hop_size,
max_sil_kept=slicer_max_sil_kept
)
# Step (1): Use slicer to segment the input audio and get positions
click.echo("Slicing audio...")
segments_with_pos = slicer.slice(audio) # Now returns list of (start_pos, chunk)
if restore_loudness:
click.echo(f"Will restore loudness to original")
# Calculate fade size in samples
fade_samples = int(fade_duration * sample_rate / 1000)
# Process segments
if batch_size > 1:
click.echo(f"Processing {len(segments_with_pos)} segments with batch size {batch_size}...")
result_audio = np.zeros(len(audio) + fade_samples) # Extra space for potential overlap
with torch.no_grad():
processed_segments = batch_process_segments(
segments_with_pos, svc_model, vocoder, rmvpe, hubert, rms_extractor,
speaker_id, sample_rate, hop_length, device,
key_shift, infer_steps, ds_cfg_strength, spk_cfg_strength,
skip_cfg_strength, cfg_skip_layers, cfg_rescale,
cvec_downsample_rate, target_loudness, restore_loudness,
robust_f0, use_fp16, batch_size
)
for idx, (start_sample, audio_out, expected_length) in enumerate(processed_segments):
# Apply fades
if idx > 0: # Not first segment
audio_out = apply_fade(audio_out.copy(), fade_samples, fade_in=True)
result_audio[start_sample:start_sample + fade_samples] *= \
np.linspace(1, 0, fade_samples) # Fade out previous
if idx < len(processed_segments) - 1: # Not last segment
audio_out[-fade_samples:] *= np.linspace(1, 0, fade_samples) # Fade out
# Add to result
result_audio[start_sample:start_sample + len(audio_out)] += audio_out
else:
# Original processing method using sliced_inference
click.echo(f"Processing {len(segments_with_pos)} segments...")
result_audio = np.zeros(len(audio) + fade_samples) # Extra space for potential overlap
with torch.no_grad():
for idx, (start_sample, chunk) in enumerate(tqdm(segments_with_pos)):
# Process the segment
audio_out = process_segment(
chunk, svc_model, vocoder, rmvpe, hubert, rms_extractor,
speaker_id, sample_rate, hop_length, device,
key_shift, infer_steps, ds_cfg_strength, spk_cfg_strength,
skip_cfg_strength, cfg_skip_layers, cfg_rescale,
cvec_downsample_rate, target_loudness, restore_loudness, sliced_inference,
robust_f0, use_fp16
)
# Ensure consistent length
expected_length = len(chunk)
if len(audio_out) > expected_length:
audio_out = audio_out[:expected_length]
elif len(audio_out) < expected_length:
audio_out = np.pad(audio_out, (0, expected_length - len(audio_out)), 'constant')
# Apply fades
if idx > 0: # Not first segment
audio_out = apply_fade(audio_out.copy(), fade_samples, fade_in=True)
result_audio[start_sample:start_sample + fade_samples] *= \
np.linspace(1, 0, fade_samples) # Fade out previous
if idx < len(segments_with_pos) - 1: # Not last segment
audio_out[-fade_samples:] *= np.linspace(1, 0, fade_samples) # Fade out
# Add to result
result_audio[start_sample:start_sample + len(audio_out)] += audio_out
# Trim any extra padding
result_audio = result_audio[:len(audio)]
# Save output
click.echo("Saving output...")
output_path = Path(output)
output_path.parent.mkdir(parents=True, exist_ok=True)
torchaudio.save(output, torch.from_numpy(result_audio).unsqueeze(0), sample_rate)
click.echo("Done!")
if __name__ == '__main__':
main() |