File size: 10,840 Bytes
898b100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import logging
import warnings

import librosa

warnings.filterwarnings('ignore')

# Configure logging at the top of your slicer.py
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


class Slicer:
    def __init__(self,
                 sr: int,
                 threshold: float = -30.,
                 min_length: int = 3000,
                 min_interval: int = 100,
                 hop_size: int = 20,
                 max_sil_kept: int = 5000):
        if not min_length >= min_interval >= hop_size:
            raise ValueError('The following condition must be satisfied: min_length >= min_interval >= hop_size')
        if not max_sil_kept >= hop_size:
            raise ValueError('The following condition must be satisfied: max_sil_kept >= hop_size')
        min_interval = sr * min_interval / 1000
        self.sr = sr
        self.threshold = 10 ** (threshold / 20.)
        self.hop_size = round(sr * hop_size / 1000)
        self.win_size = min(round(min_interval), 4 * self.hop_size)
        self.min_length = round(sr * min_length / 1000 / self.hop_size)
        self.min_interval = round(min_interval / self.hop_size)
        self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)


    def _apply_slice(self, waveform, begin, end):
        if len(waveform.shape) > 1:
            return waveform[:, begin * self.hop_size: min(waveform.shape[1], end * self.hop_size)]
        else:
            return waveform[begin * self.hop_size: min(waveform.shape[0], end * self.hop_size)]


    def slice(self, waveform):
        if len(waveform.shape) > 1:
            samples = librosa.to_mono(waveform)
        else:
            samples = waveform
        if samples.shape[0] <= self.min_length:
            # Return the entire audio as a single chunk
            return [(0, waveform)]
            
        rms_list = librosa.feature.rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
        sil_tags = []
        silence_start = None
        clip_start = 0
        for i, rms in enumerate(rms_list):
            # Keep looping while frame is silent.
            if rms < self.threshold:
                # Record start of silent frames.
                if silence_start is None:
                    silence_start = i
                continue
            # Keep looping while frame is not silent and silence start has not been recorded.
            if silence_start is None:
                continue
            # Clear recorded silence start if interval is not enough or clip is too short
            is_leading_silence = silence_start == 0 and i > self.max_sil_kept
            need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
            if not is_leading_silence and not need_slice_middle:
                silence_start = None
                continue
            # Need slicing. Record the range of silent frames to be removed.
            if i - silence_start <= self.max_sil_kept:
                pos = rms_list[silence_start: i + 1].argmin() + silence_start
                if silence_start == 0:
                    sil_tags.append((0, pos))
                else:
                    sil_tags.append((pos, pos))
                clip_start = pos
            elif i - silence_start <= self.max_sil_kept * 2:
                pos = rms_list[i - self.max_sil_kept: silence_start + self.max_sil_kept + 1].argmin()
                pos += i - self.max_sil_kept
                pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
                pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
                if silence_start == 0:
                    sil_tags.append((0, pos_r))
                    clip_start = pos_r
                else:
                    sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
                    clip_start = max(pos_r, pos)
            else:
                pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
                pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
                if silence_start == 0:
                    sil_tags.append((0, pos_r))
                else:
                    sil_tags.append((pos_l, pos_r))
                clip_start = pos_r
            silence_start = None
        
        # Deal with trailing silence.
        total_frames = rms_list.shape[0]
        if silence_start is not None and total_frames - silence_start >= self.min_interval:
            silence_end = min(total_frames, silence_start + self.max_sil_kept)
            pos = rms_list[silence_start: silence_end + 1].argmin() + silence_start
            sil_tags.append((pos, total_frames + 1))
        
        # Apply and return slices.
        if len(sil_tags) == 0:
            # Return the entire audio as a single chunk if no silence detected
            return [(0, waveform)]
        
        # Extract non-silence chunks
        non_silence_chunks = []
        
        # Add first non-silence chunk if it exists
        if sil_tags[0][0] > 0:
            start_pos = 0
            end_frame = sil_tags[0][0]
            chunk = self._apply_slice(waveform, 0, end_frame)
            non_silence_chunks.append((start_pos, chunk))
        
        # Add middle non-silence chunks
        for i in range(1, len(sil_tags)):
            start_frame = sil_tags[i-1][1]
            end_frame = sil_tags[i][0]
            if start_frame < end_frame:  # Only add if there's actual non-silence content
                start_pos = start_frame * self.hop_size
                chunk = self._apply_slice(waveform, start_frame, end_frame)
                non_silence_chunks.append((start_pos, chunk))
        
        # Add last non-silence chunk if it exists
        if sil_tags[-1][1] * self.hop_size < len(waveform):
            start_frame = sil_tags[-1][1]
            start_pos = start_frame * self.hop_size
            chunk = self._apply_slice(waveform, start_frame, total_frames)
            non_silence_chunks.append((start_pos, chunk))
        
        for i, (start_pos, chunk) in enumerate(non_silence_chunks):
            # Calculate start and end times in seconds
            start_time_sec = start_pos / self.sr
            end_time_sec = start_pos / self.sr + len(chunk) / self.sr if len(chunk.shape) == 1 else start_pos / self.sr + chunk.shape[1] / self.sr
            duration_sec = end_time_sec - start_time_sec
            
            # Format start and end times as mm:ss
            start_min, start_sec = divmod(start_time_sec, 60)
            end_min, end_sec = divmod(end_time_sec, 60)
            
            # Log the information
            logger.info(f"Chunk {i}: Start={int(start_min):02d}:{start_sec:05.2f}, End={int(end_min):02d}:{end_sec:05.2f}, Duration={duration_sec:.2f}s")
        
        return non_silence_chunks



def main():
    import os.path
    from argparse import ArgumentParser
    import librosa
    import soundfile
    from pathlib import Path

    parser = ArgumentParser()
    parser.add_argument('audio', type=str, help='The audio file or directory to be sliced')
    parser.add_argument('--out', type=str, help='Output directory of the sliced audio clips')
    parser.add_argument('--db_thresh', type=float, required=False, default=-30,
                        help='The dB threshold for silence detection')
    parser.add_argument('--min_length', type=int, required=False, default=3000,
                        help='The minimum milliseconds required for each sliced audio clip')
    parser.add_argument('--min_interval', type=int, required=False, default=100,
                        help='The minimum milliseconds for a silence part to be sliced')
    parser.add_argument('--hop_size', type=int, required=False, default=20,
                        help='Frame length in milliseconds')
    parser.add_argument('--max_sil_kept', type=int, required=False, default=5000,
                        help='The maximum silence length kept around the sliced clip, presented in milliseconds')
    args = parser.parse_args()
    
    # Determine if the input is a file or directory
    audio_path = Path(args.audio)
    is_directory = audio_path.is_dir()
    
    # Prepare output directory
    out = args.out
    if out is None:
        if is_directory:
            out = os.path.abspath(args.audio)
        else:
            out = os.path.dirname(os.path.abspath(args.audio))
    
    if not os.path.exists(out):
        os.makedirs(out)
    
    # Audio file extensions to process
    audio_extensions = ['.wav', '.mp3', '.flac', '.ogg', '.m4a']
    
    # Process a single file or all files in a directory
    if is_directory:
        logger.info(f"Processing all audio files in directory: {args.audio}")
        audio_files = []
        for ext in audio_extensions:
            audio_files.extend(list(audio_path.glob(f'*{ext}')))
        
        if not audio_files:
            logger.warning(f"No audio files found in {args.audio}")
            return
        
        logger.info(f"Found {len(audio_files)} audio files to process")
        for audio_file in audio_files:
            process_audio_file(audio_file, out, args)
    else:
        # Process a single audio file
        logger.info(f"Processing single audio file: {args.audio}")
        process_audio_file(audio_path, out, args)

def process_audio_file(audio_file, out_dir, args):
    """Process a single audio file with the given parameters"""
    import os.path
    import librosa
    import soundfile
    
    try:
        logger.info(f"Loading audio file: {audio_file}")
        audio, sr = librosa.load(str(audio_file), sr=None, mono=False)
        
        slicer = Slicer(
            sr=sr,
            threshold=args.db_thresh,
            min_length=args.min_length,
            min_interval=args.min_interval,
            hop_size=args.hop_size,
            max_sil_kept=args.max_sil_kept
        )
        
        # Get non-silence chunks with their positions
        chunks_with_pos = slicer.slice(audio)
        
        file_basename = os.path.basename(str(audio_file)).rsplit('.', maxsplit=1)[0]
        logger.info(f"Saving {len(chunks_with_pos)} non-silence audio chunks from {file_basename}...")
        
        for i, (pos, chunk) in enumerate(chunks_with_pos):
            if len(chunk.shape) > 1:
                chunk = chunk.T
            
            output_file = os.path.join(out_dir, f'{file_basename}_{i}_pos_{pos}.wav')
            soundfile.write(output_file, chunk, sr)
        
        logger.info(f"Finished processing {audio_file}")
    except Exception as e:
        logger.error(f"Error processing {audio_file}: {str(e)}")


if __name__ == '__main__':
    main()