RIFT-SVC-Nanami / slicer.py
prismleong
init
898b100
import logging
import warnings
import librosa
warnings.filterwarnings('ignore')
# Configure logging at the top of your slicer.py
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class Slicer:
def __init__(self,
sr: int,
threshold: float = -30.,
min_length: int = 3000,
min_interval: int = 100,
hop_size: int = 20,
max_sil_kept: int = 5000):
if not min_length >= min_interval >= hop_size:
raise ValueError('The following condition must be satisfied: min_length >= min_interval >= hop_size')
if not max_sil_kept >= hop_size:
raise ValueError('The following condition must be satisfied: max_sil_kept >= hop_size')
min_interval = sr * min_interval / 1000
self.sr = sr
self.threshold = 10 ** (threshold / 20.)
self.hop_size = round(sr * hop_size / 1000)
self.win_size = min(round(min_interval), 4 * self.hop_size)
self.min_length = round(sr * min_length / 1000 / self.hop_size)
self.min_interval = round(min_interval / self.hop_size)
self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
def _apply_slice(self, waveform, begin, end):
if len(waveform.shape) > 1:
return waveform[:, begin * self.hop_size: min(waveform.shape[1], end * self.hop_size)]
else:
return waveform[begin * self.hop_size: min(waveform.shape[0], end * self.hop_size)]
def slice(self, waveform):
if len(waveform.shape) > 1:
samples = librosa.to_mono(waveform)
else:
samples = waveform
if samples.shape[0] <= self.min_length:
# Return the entire audio as a single chunk
return [(0, waveform)]
rms_list = librosa.feature.rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
sil_tags = []
silence_start = None
clip_start = 0
for i, rms in enumerate(rms_list):
# Keep looping while frame is silent.
if rms < self.threshold:
# Record start of silent frames.
if silence_start is None:
silence_start = i
continue
# Keep looping while frame is not silent and silence start has not been recorded.
if silence_start is None:
continue
# Clear recorded silence start if interval is not enough or clip is too short
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
if not is_leading_silence and not need_slice_middle:
silence_start = None
continue
# Need slicing. Record the range of silent frames to be removed.
if i - silence_start <= self.max_sil_kept:
pos = rms_list[silence_start: i + 1].argmin() + silence_start
if silence_start == 0:
sil_tags.append((0, pos))
else:
sil_tags.append((pos, pos))
clip_start = pos
elif i - silence_start <= self.max_sil_kept * 2:
pos = rms_list[i - self.max_sil_kept: silence_start + self.max_sil_kept + 1].argmin()
pos += i - self.max_sil_kept
pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
if silence_start == 0:
sil_tags.append((0, pos_r))
clip_start = pos_r
else:
sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
clip_start = max(pos_r, pos)
else:
pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
if silence_start == 0:
sil_tags.append((0, pos_r))
else:
sil_tags.append((pos_l, pos_r))
clip_start = pos_r
silence_start = None
# Deal with trailing silence.
total_frames = rms_list.shape[0]
if silence_start is not None and total_frames - silence_start >= self.min_interval:
silence_end = min(total_frames, silence_start + self.max_sil_kept)
pos = rms_list[silence_start: silence_end + 1].argmin() + silence_start
sil_tags.append((pos, total_frames + 1))
# Apply and return slices.
if len(sil_tags) == 0:
# Return the entire audio as a single chunk if no silence detected
return [(0, waveform)]
# Extract non-silence chunks
non_silence_chunks = []
# Add first non-silence chunk if it exists
if sil_tags[0][0] > 0:
start_pos = 0
end_frame = sil_tags[0][0]
chunk = self._apply_slice(waveform, 0, end_frame)
non_silence_chunks.append((start_pos, chunk))
# Add middle non-silence chunks
for i in range(1, len(sil_tags)):
start_frame = sil_tags[i-1][1]
end_frame = sil_tags[i][0]
if start_frame < end_frame: # Only add if there's actual non-silence content
start_pos = start_frame * self.hop_size
chunk = self._apply_slice(waveform, start_frame, end_frame)
non_silence_chunks.append((start_pos, chunk))
# Add last non-silence chunk if it exists
if sil_tags[-1][1] * self.hop_size < len(waveform):
start_frame = sil_tags[-1][1]
start_pos = start_frame * self.hop_size
chunk = self._apply_slice(waveform, start_frame, total_frames)
non_silence_chunks.append((start_pos, chunk))
for i, (start_pos, chunk) in enumerate(non_silence_chunks):
# Calculate start and end times in seconds
start_time_sec = start_pos / self.sr
end_time_sec = start_pos / self.sr + len(chunk) / self.sr if len(chunk.shape) == 1 else start_pos / self.sr + chunk.shape[1] / self.sr
duration_sec = end_time_sec - start_time_sec
# Format start and end times as mm:ss
start_min, start_sec = divmod(start_time_sec, 60)
end_min, end_sec = divmod(end_time_sec, 60)
# Log the information
logger.info(f"Chunk {i}: Start={int(start_min):02d}:{start_sec:05.2f}, End={int(end_min):02d}:{end_sec:05.2f}, Duration={duration_sec:.2f}s")
return non_silence_chunks
def main():
import os.path
from argparse import ArgumentParser
import librosa
import soundfile
from pathlib import Path
parser = ArgumentParser()
parser.add_argument('audio', type=str, help='The audio file or directory to be sliced')
parser.add_argument('--out', type=str, help='Output directory of the sliced audio clips')
parser.add_argument('--db_thresh', type=float, required=False, default=-30,
help='The dB threshold for silence detection')
parser.add_argument('--min_length', type=int, required=False, default=3000,
help='The minimum milliseconds required for each sliced audio clip')
parser.add_argument('--min_interval', type=int, required=False, default=100,
help='The minimum milliseconds for a silence part to be sliced')
parser.add_argument('--hop_size', type=int, required=False, default=20,
help='Frame length in milliseconds')
parser.add_argument('--max_sil_kept', type=int, required=False, default=5000,
help='The maximum silence length kept around the sliced clip, presented in milliseconds')
args = parser.parse_args()
# Determine if the input is a file or directory
audio_path = Path(args.audio)
is_directory = audio_path.is_dir()
# Prepare output directory
out = args.out
if out is None:
if is_directory:
out = os.path.abspath(args.audio)
else:
out = os.path.dirname(os.path.abspath(args.audio))
if not os.path.exists(out):
os.makedirs(out)
# Audio file extensions to process
audio_extensions = ['.wav', '.mp3', '.flac', '.ogg', '.m4a']
# Process a single file or all files in a directory
if is_directory:
logger.info(f"Processing all audio files in directory: {args.audio}")
audio_files = []
for ext in audio_extensions:
audio_files.extend(list(audio_path.glob(f'*{ext}')))
if not audio_files:
logger.warning(f"No audio files found in {args.audio}")
return
logger.info(f"Found {len(audio_files)} audio files to process")
for audio_file in audio_files:
process_audio_file(audio_file, out, args)
else:
# Process a single audio file
logger.info(f"Processing single audio file: {args.audio}")
process_audio_file(audio_path, out, args)
def process_audio_file(audio_file, out_dir, args):
"""Process a single audio file with the given parameters"""
import os.path
import librosa
import soundfile
try:
logger.info(f"Loading audio file: {audio_file}")
audio, sr = librosa.load(str(audio_file), sr=None, mono=False)
slicer = Slicer(
sr=sr,
threshold=args.db_thresh,
min_length=args.min_length,
min_interval=args.min_interval,
hop_size=args.hop_size,
max_sil_kept=args.max_sil_kept
)
# Get non-silence chunks with their positions
chunks_with_pos = slicer.slice(audio)
file_basename = os.path.basename(str(audio_file)).rsplit('.', maxsplit=1)[0]
logger.info(f"Saving {len(chunks_with_pos)} non-silence audio chunks from {file_basename}...")
for i, (pos, chunk) in enumerate(chunks_with_pos):
if len(chunk.shape) > 1:
chunk = chunk.T
output_file = os.path.join(out_dir, f'{file_basename}_{i}_pos_{pos}.wav')
soundfile.write(output_file, chunk, sr)
logger.info(f"Finished processing {audio_file}")
except Exception as e:
logger.error(f"Error processing {audio_file}: {str(e)}")
if __name__ == '__main__':
main()