Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2023-present the HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| from contextlib import contextmanager | |
| from copy import deepcopy | |
| from functools import update_wrapper | |
| from types import MethodType | |
| from .peft_model import PeftConfig, PeftModel | |
| from .tuners.lora.layer import LoraLayer | |
| def update_forward_signature(model: PeftModel) -> None: | |
| """ | |
| Updates the forward signature of the PeftModel to include parents class signature | |
| model (`PeftModel`): Peft model to update the forward signature | |
| Example: | |
| ```python | |
| >>> from transformers import WhisperForConditionalGeneration | |
| >>> from peft import get_peft_model, LoraConfig, update_forward_signature | |
| >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en") | |
| >>> peft_config = LoraConfig(r=8, lora_alpha=32, lora_dropout=0.1, target_modules=["q_proj", "v_proj"]) | |
| >>> peft_model = get_peft_model(model, peft_config) | |
| >>> update_forward_signature(peft_model) | |
| ``` | |
| """ | |
| # Only update signature when the current forward signature only has *args and **kwargs | |
| current_signature = inspect.signature(model.forward) | |
| if ( | |
| len(current_signature.parameters) == 2 | |
| and "args" in current_signature.parameters | |
| and "kwargs" in current_signature.parameters | |
| ): | |
| forward = deepcopy(model.forward.__func__) | |
| update_wrapper( | |
| forward, type(model.get_base_model()).forward, assigned=("__doc__", "__name__", "__annotations__") | |
| ) | |
| model.forward = MethodType(forward, model) | |
| def update_generate_signature(model: PeftModel) -> None: | |
| """ | |
| Updates the generate signature of a PeftModel with overriding generate to include parents class signature | |
| model (`PeftModel`): Peft model to update the generate signature | |
| Example: | |
| ```python | |
| >>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
| >>> from peft import get_peft_model, LoraConfig, TaskType, update_generate_signature | |
| >>> model_name_or_path = "bigscience/mt0-large" | |
| >>> tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) | |
| >>> model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path) | |
| >>> peft_config = LoraConfig( | |
| ... task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1 | |
| ... ) | |
| >>> peft_model = get_peft_model(model, peft_config) | |
| >>> update_generate_signature(peft_model) | |
| >>> help(peft_model.generate) | |
| ``` | |
| """ | |
| if not hasattr(model, "generate"): | |
| return | |
| current_signature = inspect.signature(model.generate) | |
| if ( | |
| len(current_signature.parameters) == 2 | |
| and "args" in current_signature.parameters | |
| and "kwargs" in current_signature.parameters | |
| ) or (len(current_signature.parameters) == 1 and "kwargs" in current_signature.parameters): | |
| generate = deepcopy(model.generate.__func__) | |
| update_wrapper( | |
| generate, | |
| type(model.get_base_model()).generate, | |
| assigned=("__doc__", "__name__", "__annotations__"), | |
| ) | |
| model.generate = MethodType(generate, model) | |
| def update_signature(model: PeftModel, method: str = "all") -> None: | |
| """ | |
| Updates the signature of a PeftModel include parents class signature for forward or generate method | |
| model (`PeftModel`): Peft model to update generate or forward signature method (`str`): method to update | |
| signature choose one of "forward", "generate", "all" | |
| Example: | |
| ```python | |
| >>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
| >>> from peft import get_peft_model, LoraConfig, TaskType, update_signature | |
| >>> model_name_or_path = "bigscience/mt0-large" | |
| >>> tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) | |
| >>> model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path) | |
| >>> peft_config = LoraConfig( | |
| ... task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1 | |
| ... ) | |
| >>> peft_model = get_peft_model(model, peft_config) | |
| >>> update_signature(peft_model) | |
| >>> help(peft_model.generate) | |
| ``` | |
| """ | |
| if method == "forward": | |
| update_forward_signature(model) | |
| elif method == "generate": | |
| update_generate_signature(model) | |
| elif method == "all": | |
| update_forward_signature(model) | |
| update_generate_signature(model) | |
| else: | |
| raise ValueError(f"method {method} is not supported please choose one of ['forward', 'generate', 'all']") | |
| def check_if_peft_model(model_name_or_path: str) -> bool: | |
| """ | |
| Check if the model is a PEFT model. | |
| Args: | |
| model_name_or_path (`str`): | |
| Model id to check, can be local or on the Hugging Face Hub. | |
| Returns: | |
| `bool`: True if the model is a PEFT model, False otherwise. | |
| """ | |
| is_peft_model = True | |
| try: | |
| PeftConfig.from_pretrained(model_name_or_path) | |
| except Exception: | |
| # allow broad exceptions so that this works even if new exceptions are added on HF Hub side | |
| is_peft_model = False | |
| return is_peft_model | |
| def rescale_adapter_scale(model, multiplier): | |
| """ | |
| Context manager to temporarily rescale the scaling of the LoRA adapter in a model. | |
| The original scaling values are restored when the context manager exits. This context manager works with the | |
| transformers and diffusers models that have directly loaded LoRA adapters. | |
| For LoRA, applying this context manager with multiplier in [0, 1] is strictly equivalent to applying | |
| [wise-ft](https://arxiv.org/abs/2109.01903) (see [#1940](https://github.com/huggingface/peft/issues/1940) for | |
| details). It can improve the performances of the model if there is a distribution shiftbetween the training data | |
| used for fine-tuning, and the test data used during inference. | |
| Warning: It has been reported that when using Apple's MPS backend for PyTorch, it is necessary to add a short sleep | |
| time after exiting the context before the scales are fully restored. | |
| Args: | |
| model: The model containing `LoraLayer` modules whose scaling is to be adjusted. | |
| multiplier (float or int): | |
| The multiplier that rescales the `scaling` attribute. Must be of type float or int. | |
| Raises: | |
| ValueError: If the model does not contain any `LoraLayer` | |
| instances, indicating that the model does not support scaling. | |
| Example: | |
| ```python | |
| >>> model = ModelWithLoraLayer() | |
| >>> multiplier = 0.5 | |
| >>> with rescale_adapter_scale(model, multiplier): | |
| ... outputs = model(**inputs) # Perform operations with the scaled model | |
| >>> outputs = model(**inputs) # The original scaling values are restored here | |
| ``` | |
| """ | |
| # check if multiplier has a valid data type | |
| if not isinstance(multiplier, (float, int)): | |
| raise TypeError(f"Argument multiplier should be of type float, got {type(multiplier)}") | |
| # iterate on the model's modules and grab the original scaling attribute | |
| # from the lora layers if present | |
| original_scaling = {} | |
| for module in model.modules(): | |
| if isinstance(module, LoraLayer): | |
| original_scaling[module] = module.scaling.copy() | |
| module.scaling = {k: v * multiplier for k, v in module.scaling.items()} | |
| # check whether scaling is prohibited on model | |
| # the original scaling dictionary should be empty | |
| # if there were no lora layers | |
| if not original_scaling: | |
| raise ValueError("scaling is only supported for models with `LoraLayer`s") | |
| try: | |
| yield | |
| finally: | |
| # restore original scaling values after exiting the context | |
| for module, scaling in original_scaling.items(): | |
| module.scaling = scaling | |