Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024-present the HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Optional, Tuple | |
| import torch | |
| class IncrementalPCA: | |
| """ | |
| An implementation of Incremental Principal Components Analysis (IPCA) that leverages PyTorch for GPU acceleration. | |
| Adapted from https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/decomposition/_incremental_pca.py | |
| This class provides methods to fit the model on data incrementally in batches, and to transform new data based on | |
| the principal components learned during the fitting process. | |
| Args: | |
| n_components (int, optional): Number of components to keep. If `None`, it's set to the minimum of the | |
| number of samples and features. Defaults to None. | |
| copy (bool): If False, input data will be overwritten. Defaults to True. | |
| batch_size (int, optional): The number of samples to use for each batch. Only needed if self.fit is called. | |
| If `None`, it's inferred from the data and set to `5 * n_features`. Defaults to None. | |
| svd_driver (str, optional): name of the cuSOLVER method to be used for torch.linalg.svd. This keyword | |
| argument only works on CUDA inputs. Available options are: None, gesvd, gesvdj, and gesvda. Defaults to | |
| None. | |
| lowrank (bool, optional): Whether to use torch.svd_lowrank instead of torch.linalg.svd which can be faster. | |
| Defaults to False. | |
| lowrank_q (int, optional): For an adequate approximation of n_components, this parameter defaults to | |
| n_components * 2. | |
| lowrank_niter (int, optional): Number of subspace iterations to conduct for torch.svd_lowrank. | |
| Defaults to 4. | |
| lowrank_seed (int, optional): Seed for making results of torch.svd_lowrank reproducible. | |
| """ | |
| def __init__( | |
| self, | |
| n_components: Optional[int] = None, | |
| copy: Optional[bool] = True, | |
| batch_size: Optional[int] = None, | |
| svd_driver: Optional[str] = None, | |
| lowrank: bool = False, | |
| lowrank_q: Optional[int] = None, | |
| lowrank_niter: int = 4, | |
| lowrank_seed: Optional[int] = None, | |
| ): | |
| self.n_components = n_components | |
| self.copy = copy | |
| self.batch_size = batch_size | |
| self.svd_driver = svd_driver | |
| self.lowrank = lowrank | |
| self.lowrank_q = lowrank_q | |
| self.lowrank_niter = lowrank_niter | |
| self.lowrank_seed = lowrank_seed | |
| self.n_features_ = None | |
| if self.lowrank: | |
| self._validate_lowrank_params() | |
| def _validate_lowrank_params(self): | |
| if self.lowrank_q is None: | |
| if self.n_components is None: | |
| raise ValueError("n_components must be specified when using lowrank mode with lowrank_q=None.") | |
| self.lowrank_q = self.n_components * 2 | |
| elif self.lowrank_q < self.n_components: | |
| raise ValueError("lowrank_q must be greater than or equal to n_components.") | |
| def _svd_fn_full(self, X): | |
| return torch.linalg.svd(X, full_matrices=False, driver=self.svd_driver) | |
| def _svd_fn_lowrank(self, X): | |
| seed_enabled = self.lowrank_seed is not None | |
| with torch.random.fork_rng(enabled=seed_enabled): | |
| if seed_enabled: | |
| torch.manual_seed(self.lowrank_seed) | |
| U, S, V = torch.svd_lowrank(X, q=self.lowrank_q, niter=self.lowrank_niter) | |
| return U, S, V.mH | |
| def _validate_data(self, X) -> torch.Tensor: | |
| """ | |
| Validates and converts the input data `X` to the appropriate tensor format. | |
| Args: | |
| X (torch.Tensor): Input data. | |
| Returns: | |
| torch.Tensor: Converted to appropriate format. | |
| """ | |
| valid_dtypes = [torch.float32, torch.float64] | |
| if not isinstance(X, torch.Tensor): | |
| X = torch.tensor(X, dtype=torch.float32) | |
| elif self.copy: | |
| X = X.clone() | |
| n_samples, n_features = X.shape | |
| if self.n_components is None: | |
| pass | |
| elif self.n_components > n_features: | |
| raise ValueError( | |
| f"n_components={self.n_components} invalid for n_features={n_features}, " | |
| "need more rows than columns for IncrementalPCA processing." | |
| ) | |
| elif self.n_components > n_samples: | |
| raise ValueError( | |
| f"n_components={self.n_components} must be less or equal to the batch number of samples {n_samples}" | |
| ) | |
| if X.dtype not in valid_dtypes: | |
| X = X.to(torch.float32) | |
| return X | |
| def _incremental_mean_and_var( | |
| X, last_mean, last_variance, last_sample_count | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
| """ | |
| Computes the incremental mean and variance for the data `X`. | |
| Args: | |
| X (torch.Tensor): The batch input data tensor with shape (n_samples, n_features). | |
| last_mean (torch.Tensor): The previous mean tensor with shape (n_features,). | |
| last_variance (torch.Tensor): The previous variance tensor with shape (n_features,). | |
| last_sample_count (torch.Tensor): The count tensor of samples processed before the current batch. | |
| Returns: | |
| Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Updated mean, variance tensors, and total sample count. | |
| """ | |
| if X.shape[0] == 0: | |
| return last_mean, last_variance, last_sample_count | |
| if last_sample_count > 0: | |
| if last_mean is None: | |
| raise ValueError("last_mean should not be None if last_sample_count > 0.") | |
| if last_variance is None: | |
| raise ValueError("last_variance should not be None if last_sample_count > 0.") | |
| new_sample_count = torch.tensor([X.shape[0]], device=X.device) | |
| updated_sample_count = last_sample_count + new_sample_count | |
| if last_mean is None: | |
| last_sum = torch.zeros(X.shape[1], dtype=torch.float64, device=X.device) | |
| else: | |
| last_sum = last_mean * last_sample_count | |
| new_sum = X.sum(dim=0, dtype=torch.float64) | |
| updated_mean = (last_sum + new_sum) / updated_sample_count | |
| T = new_sum / new_sample_count | |
| temp = X - T | |
| correction = temp.sum(dim=0, dtype=torch.float64).square() | |
| temp.square_() | |
| new_unnormalized_variance = temp.sum(dim=0, dtype=torch.float64) | |
| new_unnormalized_variance -= correction / new_sample_count | |
| if last_variance is None: | |
| updated_variance = new_unnormalized_variance / updated_sample_count | |
| else: | |
| last_unnormalized_variance = last_variance * last_sample_count | |
| last_over_new_count = last_sample_count.double() / new_sample_count | |
| updated_unnormalized_variance = ( | |
| last_unnormalized_variance | |
| + new_unnormalized_variance | |
| + last_over_new_count / updated_sample_count * (last_sum / last_over_new_count - new_sum).square() | |
| ) | |
| updated_variance = updated_unnormalized_variance / updated_sample_count | |
| return updated_mean, updated_variance, updated_sample_count | |
| def _svd_flip(u, v, u_based_decision=True) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """ | |
| Adjusts the signs of the singular vectors from the SVD decomposition for deterministic output. | |
| This method ensures that the output remains consistent across different runs. | |
| Args: | |
| u (torch.Tensor): Left singular vectors tensor. | |
| v (torch.Tensor): Right singular vectors tensor. | |
| u_based_decision (bool, optional): If True, uses the left singular vectors to determine the sign flipping. | |
| Defaults to True. | |
| Returns: | |
| Tuple[torch.Tensor, torch.Tensor]: Adjusted left and right singular vectors tensors. | |
| """ | |
| if u_based_decision: | |
| max_abs_cols = torch.argmax(torch.abs(u), dim=0) | |
| signs = torch.sign(u[max_abs_cols, range(u.shape[1])]) | |
| else: | |
| max_abs_rows = torch.argmax(torch.abs(v), dim=1) | |
| signs = torch.sign(v[range(v.shape[0]), max_abs_rows]) | |
| u *= signs[: u.shape[1]].view(1, -1) | |
| v *= signs.view(-1, 1) | |
| return u, v | |
| def fit(self, X, check_input=True): | |
| """ | |
| Fits the model with data `X` using minibatches of size `batch_size`. | |
| Args: | |
| X (torch.Tensor): The input data tensor with shape (n_samples, n_features). | |
| check_input (bool, optional): If True, validates the input. Defaults to True. | |
| Returns: | |
| IncrementalPCA: The fitted IPCA model. | |
| """ | |
| if check_input: | |
| X = self._validate_data(X) | |
| n_samples, n_features = X.shape | |
| if self.batch_size is None: | |
| self.batch_size = 5 * n_features | |
| for batch in self.gen_batches(n_samples, self.batch_size, min_batch_size=self.n_components or 0): | |
| self.partial_fit(X[batch], check_input=False) | |
| return self | |
| def partial_fit(self, X, check_input=True): | |
| """ | |
| Incrementally fits the model with batch data `X`. | |
| Args: | |
| X (torch.Tensor): The batch input data tensor with shape (n_samples, n_features). | |
| check_input (bool, optional): If True, validates the input. Defaults to True. | |
| Returns: | |
| IncrementalPCA: The updated IPCA model after processing the batch. | |
| """ | |
| first_pass = not hasattr(self, "components_") | |
| if check_input: | |
| X = self._validate_data(X) | |
| n_samples, n_features = X.shape | |
| # Initialize attributes to avoid errors during the first call to partial_fit | |
| if first_pass: | |
| self.mean_ = None # Will be initialized properly in _incremental_mean_and_var based on data dimensions | |
| self.var_ = None # Will be initialized properly in _incremental_mean_and_var based on data dimensions | |
| self.n_samples_seen_ = torch.tensor([0], device=X.device) | |
| self.n_features_ = n_features | |
| if not self.n_components: | |
| self.n_components = min(n_samples, n_features) | |
| if n_features != self.n_features_: | |
| raise ValueError( | |
| "Number of features of the new batch does not match the number of features of the first batch." | |
| ) | |
| col_mean, col_var, n_total_samples = self._incremental_mean_and_var( | |
| X, self.mean_, self.var_, self.n_samples_seen_ | |
| ) | |
| if first_pass: | |
| X -= col_mean | |
| else: | |
| col_batch_mean = torch.mean(X, dim=0) | |
| X -= col_batch_mean | |
| mean_correction_factor = torch.sqrt((self.n_samples_seen_.double() / n_total_samples) * n_samples) | |
| mean_correction = mean_correction_factor * (self.mean_ - col_batch_mean) | |
| X = torch.vstack( | |
| ( | |
| self.singular_values_.view((-1, 1)) * self.components_, | |
| X, | |
| mean_correction, | |
| ) | |
| ) | |
| if self.lowrank: | |
| U, S, Vt = self._svd_fn_lowrank(X) | |
| else: | |
| U, S, Vt = self._svd_fn_full(X) | |
| U, Vt = self._svd_flip(U, Vt, u_based_decision=False) | |
| explained_variance = S**2 / (n_total_samples - 1) | |
| explained_variance_ratio = S**2 / torch.sum(col_var * n_total_samples) | |
| self.n_samples_seen_ = n_total_samples | |
| self.components_ = Vt[: self.n_components] | |
| self.singular_values_ = S[: self.n_components] | |
| self.mean_ = col_mean | |
| self.var_ = col_var | |
| self.explained_variance_ = explained_variance[: self.n_components] | |
| self.explained_variance_ratio_ = explained_variance_ratio[: self.n_components] | |
| if self.n_components not in (n_samples, n_features): | |
| self.noise_variance_ = explained_variance[self.n_components :].mean() | |
| else: | |
| self.noise_variance_ = torch.tensor(0.0, device=X.device) | |
| return self | |
| def transform(self, X) -> torch.Tensor: | |
| """ | |
| Applies dimensionality reduction to `X`. | |
| The input data `X` is projected on the first principal components previously extracted from a training set. | |
| Args: | |
| X (torch.Tensor): New data tensor with shape (n_samples, n_features) to be transformed. | |
| Returns: | |
| torch.Tensor: Transformed data tensor with shape (n_samples, n_components). | |
| """ | |
| X = X - self.mean_ | |
| return torch.mm(X.double(), self.components_.T).to(X.dtype) | |
| def gen_batches(n: int, batch_size: int, min_batch_size: int = 0): | |
| """Generator to create slices containing `batch_size` elements from 0 to `n`. | |
| The last slice may contain less than `batch_size` elements, when `batch_size` does not divide `n`. | |
| Args: | |
| n (int): Size of the sequence. | |
| batch_size (int): Number of elements in each batch. | |
| min_batch_size (int, optional): Minimum number of elements in each batch. Defaults to 0. | |
| Yields: | |
| slice: A slice of `batch_size` elements. | |
| """ | |
| start = 0 | |
| for _ in range(int(n // batch_size)): | |
| end = start + batch_size | |
| if end + min_batch_size > n: | |
| continue | |
| yield slice(start, end) | |
| start = end | |
| if start < n: | |
| yield slice(start, n) | |