Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import requests | |
| from typing import List, Dict, Tuple | |
| from flask import Flask, request, jsonify | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import threading | |
| import torch | |
| # Define the API URL to use the internal server | |
| API_URL = "http://localhost:5000/chat" | |
| History = List[Tuple[str, str]] | |
| Messages = List[Dict[str, str]] | |
| app = Flask(__name__) | |
| # Load the model and tokenizer | |
| model_name = "dicta-il/dictalm2.0-instruct" | |
| model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| # Set the pad_token to eos_token if not already set | |
| if tokenizer.pad_token is None: | |
| tokenizer.pad_token = tokenizer.eos_token | |
| def chat(): | |
| data = request.json | |
| messages = data.get('messages', []) | |
| if not messages: | |
| return jsonify({"response": "No messages provided"}), 400 | |
| # Concatenate all user inputs into a single string | |
| user_input = " ".join([msg['content'] for msg in messages if msg['role'] == 'user']) | |
| inputs = tokenizer(user_input, return_tensors='pt', padding=True, truncation=True) | |
| input_ids = inputs['input_ids'] | |
| attention_mask = inputs['attention_mask'] | |
| outputs = model.generate(input_ids, attention_mask=attention_mask) | |
| response_text = tokenizer.decode(outputs[0], skip_special_tokens=True).replace(user_input, '').strip() | |
| return jsonify({"response": response_text}) | |
| # Function to run the Flask app | |
| def run_flask(): | |
| app.run(host='0.0.0.0', port=5000) | |
| # Start the Flask app in a separate thread | |
| threading.Thread(target=run_flask).start() | |
| # Gradio interface functions | |
| def clear_session() -> History: | |
| return [] | |
| def history_to_messages(history: History) -> Messages: | |
| messages = [] | |
| for h in history: | |
| messages.append({'role': 'user', 'content': h[0].strip()}) | |
| messages.append({'role': 'assistant', 'content': h[1].strip()}) | |
| return messages | |
| def messages_to_history(messages: Messages) -> History: | |
| history = [] | |
| for q, r in zip(messages[0::2], messages[1::2]): | |
| history.append((q['content'], r['content'])) | |
| return history | |
| def model_chat(query: str, history: History) -> Tuple[str, History]: | |
| if not query.strip(): | |
| return '', history | |
| messages = history_to_messages(history) | |
| messages.append({'role': 'user', 'content': query.strip()}) | |
| try: | |
| response = requests.post(API_URL, json={"messages": messages}) | |
| response.raise_for_status() # This will raise an HTTPError if the HTTP request returned an unsuccessful status code | |
| response_json = response.json() | |
| response_text = response_json.get("response", "Error: Response format is incorrect") | |
| except requests.exceptions.HTTPError as e: | |
| response_text = f"HTTPError: {str(e)}" | |
| print(f"HTTPError: {e.response.text}") # Detailed error message | |
| except requests.exceptions.RequestException as e: | |
| response_text = f"RequestException: {str(e)}" | |
| print(f"RequestException: {e}") # Debug print statement | |
| except ValueError as e: | |
| response_text = "ValueError: Invalid JSON response" | |
| print(f"ValueError: {e}") # Debug print statement | |
| except Exception as e: | |
| response_text = f"Exception: {str(e)}" | |
| print(f"General Exception: {e}") # Debug print statement | |
| history.append((query.strip(), response_text.strip())) | |
| return response_text.strip(), history | |
| # Gradio interface setup | |
| with gr.Blocks(css=''' | |
| .gr-group {direction: rtl;} | |
| .chatbot{text-align:right;} | |
| .dicta-header { | |
| background-color: var(--input-background-fill); | |
| border-radius: 10px; | |
| padding: 20px; | |
| text-align: center; | |
| display: flex; | |
| flex-direction: row; | |
| align-items: center; | |
| box-shadow: var(--block-shadow); | |
| border-color: var(--block-border-color); | |
| border-width: 1px; | |
| } | |
| @media (max-width: 768px) { | |
| .dicta-header { | |
| flex-direction: column; | |
| } | |
| } | |
| .chatbot.prose { | |
| font-size: 1.2em; | |
| } | |
| .dicta-logo { | |
| width: 150px; | |
| height: auto; | |
| margin-bottom: 20px; | |
| } | |
| .dicta-intro-text { | |
| margin-bottom: 20px; | |
| text-align: center; | |
| display: flex; | |
| flex-direction: column; | |
| align-items: center; | |
| width: 100%; | |
| font-size: 1.1em; | |
| } | |
| textarea { | |
| font-size: 1.2em; | |
| } | |
| ''', js=None) as demo: | |
| gr.Markdown(""" | |
| <div class="dicta-header"> | |
| <a href=""> | |
| <img src="\\logo111.png" alt="Logo" class="dicta-logo"> | |
| </a> | |
| <div class="dicta-intro-text"> | |
| <h1>爪'讗讟 诪注专讻讬 - 讛讚讙诪讛 专讗砖讜谞讬转</h1> | |
| <span dir='rtl'>讘专讜讻讬诐 讛讘讗讬诐 诇讚诪讜 讛讗讬谞讟专讗拽讟讬讘讬 讛专讗砖讜谉. 讞拽专讜 讗转 讬讻讜诇讜转 讛诪讜讚诇 讜专讗讜 讻讬爪讚 讛讜讗 讬讻讜诇 诇住讬讬注 诇讻诐 讘诪砖讬诪讜转讬讻诐</span><br/> | |
| <span dir='rtl'>讛讚诪讜 谞讻转讘 注诇 讬讚讬 住专谉 专讜注讬 专转诐 转讜讱 砖讬诪讜砖 讘诪讜讚诇 砖驻讛 讚讬拽讟讛 砖驻讜转讞 注诇 讬讚讬 诪驻讗"转</span><br/> | |
| </div> | |
| </div> | |
| """) | |
| chatbot = gr.Chatbot(height=600) | |
| query = gr.Textbox(placeholder="讛讻谞住 砖讗诇讛 讘注讘专讬转 (讗讜 讘讗谞讙诇讬转!)", rtl=True) | |
| clear_btn = gr.Button("谞拽讛 砖讬讞讛") | |
| def respond(query, history): | |
| print(f"Query: {query}") # Debug print statement | |
| response, history = model_chat(query, history) | |
| print(f"Response: {response}") # Debug print statement | |
| return history, gr.update(value="", interactive=True), history # Ensure correct return format | |
| demo_state = gr.State([]) | |
| query.submit(respond, [query, demo_state], [chatbot, query, demo_state]) | |
| clear_btn.click(clear_session, [], [chatbot, demo_state]) | |
| demo.launch(share=True) | |