Spaces:
Sleeping
Sleeping
Commit
·
d1d4db7
1
Parent(s):
582506c
adding app with CLIP image segmentation
Browse files- app.py +15 -6
- requirements.txt +3 -1
app.py
CHANGED
|
@@ -5,6 +5,8 @@ import numpy as np
|
|
| 5 |
from PIL import Image
|
| 6 |
import torch
|
| 7 |
import cv2
|
|
|
|
|
|
|
| 8 |
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation,AutoProcessor,AutoConfig
|
| 9 |
|
| 10 |
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
|
@@ -33,17 +35,17 @@ def detect_using_clip(image,prompts=[],threshould=0.4):
|
|
| 33 |
for i,prompt in enumerate(prompts):
|
| 34 |
predicted_image = torch.sigmoid(preds[i][0]).detach().cpu().numpy()
|
| 35 |
predicted_image = np.where(predicted_image>threshould,255,0)
|
| 36 |
-
predicted_masks.append(
|
| 37 |
-
|
| 38 |
-
return
|
| 39 |
|
| 40 |
def visualize_images(image,predicted_images,brightness=15,contrast=1.8):
|
| 41 |
alpha = 0.7
|
| 42 |
image_resize = cv2.resize(image,(352,352))
|
| 43 |
resize_image_copy = image_resize.copy()
|
| 44 |
|
| 45 |
-
for mask_image in predicted_images:
|
| 46 |
-
|
| 47 |
|
| 48 |
return cv2.convertScaleAbs(resize_image_copy, alpha=contrast, beta=brightness)
|
| 49 |
|
|
@@ -52,10 +54,17 @@ def shot(brightness,contrast,image,labels_text):
|
|
| 52 |
prompts = labels_text.split(',')
|
| 53 |
else:
|
| 54 |
prompts = [labels_text]
|
|
|
|
| 55 |
prompts = list(map(lambda x: x.strip(),prompts))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
predicted_images = detect_using_clip(image,prompts=prompts)
|
|
|
|
| 57 |
|
| 58 |
-
category_image = visualize_images(image=image,predicted_images=predicted_images,brightness=brightness,contrast=contrast)
|
| 59 |
return category_image
|
| 60 |
|
| 61 |
iface = gr.Interface(fn=shot,
|
|
|
|
| 5 |
from PIL import Image
|
| 6 |
import torch
|
| 7 |
import cv2
|
| 8 |
+
from matplotlib import pyplot as plt
|
| 9 |
+
from segmentation_mask_overlay import overlay_masks
|
| 10 |
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation,AutoProcessor,AutoConfig
|
| 11 |
|
| 12 |
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
|
|
|
| 35 |
for i,prompt in enumerate(prompts):
|
| 36 |
predicted_image = torch.sigmoid(preds[i][0]).detach().cpu().numpy()
|
| 37 |
predicted_image = np.where(predicted_image>threshould,255,0)
|
| 38 |
+
predicted_masks.append(predicted_image)
|
| 39 |
+
bool_masks = [predicted_mask.astype('bool') for predicted_mask in predicted_masks]
|
| 40 |
+
return bool_masks
|
| 41 |
|
| 42 |
def visualize_images(image,predicted_images,brightness=15,contrast=1.8):
|
| 43 |
alpha = 0.7
|
| 44 |
image_resize = cv2.resize(image,(352,352))
|
| 45 |
resize_image_copy = image_resize.copy()
|
| 46 |
|
| 47 |
+
# for mask_image in predicted_images:
|
| 48 |
+
# resize_image_copy = cv2.addWeighted(resize_image_copy,alpha,mask_image,1-alpha,10)
|
| 49 |
|
| 50 |
return cv2.convertScaleAbs(resize_image_copy, alpha=contrast, beta=brightness)
|
| 51 |
|
|
|
|
| 54 |
prompts = labels_text.split(',')
|
| 55 |
else:
|
| 56 |
prompts = [labels_text]
|
| 57 |
+
|
| 58 |
prompts = list(map(lambda x: x.strip(),prompts))
|
| 59 |
+
|
| 60 |
+
mask_labels = [f"{prompt}_{i}" for i,prompt in enumerate(prompts)]
|
| 61 |
+
cmap = plt.cm.tab20(np.arange(len(mask_labels)))[..., :-1]
|
| 62 |
+
|
| 63 |
+
resize_image = cv2.resize(image,(352,352))
|
| 64 |
+
|
| 65 |
predicted_images = detect_using_clip(image,prompts=prompts)
|
| 66 |
+
category_image = overlay_masks(resize_image,np.stack(predicted_images,-1),labels=mask_labels,colors=cmap,alpha=0.4,beta=1)
|
| 67 |
|
|
|
|
| 68 |
return category_image
|
| 69 |
|
| 70 |
iface = gr.Interface(fn=shot,
|
requirements.txt
CHANGED
|
@@ -8,4 +8,6 @@ opencv-python
|
|
| 8 |
Pillow
|
| 9 |
requests
|
| 10 |
urllib3<2
|
| 11 |
-
git+https://github.com/facebookresearch/segment-anything.git
|
|
|
|
|
|
|
|
|
| 8 |
Pillow
|
| 9 |
requests
|
| 10 |
urllib3<2
|
| 11 |
+
git+https://github.com/facebookresearch/segment-anything.git
|
| 12 |
+
segmentation_mask_overlay
|
| 13 |
+
matplotlib
|