Spaces:
Running
Running
Update backend/app/openrouter_client.py
Browse files- backend/app/openrouter_client.py +100 -2
backend/app/openrouter_client.py
CHANGED
|
@@ -25,7 +25,12 @@ HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
| 25 |
HF_INFERENCE_API_URL = "https://api-inference.huggingface.co/models"
|
| 26 |
HF_MODEL_NAME = os.environ.get("HF_MODEL_NAME", "Qwen/Qwen3-VL-235B-A22B-Instruct") # Default HF model
|
| 27 |
|
| 28 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
EXTRACTION_BACKEND = os.environ.get("EXTRACTION_BACKEND", "openrouter").lower()
|
| 30 |
|
| 31 |
|
|
@@ -144,6 +149,8 @@ async def _extract_single_page(image_bytes: bytes, page_num: int, total_pages: i
|
|
| 144 |
|
| 145 |
if backend == "huggingface":
|
| 146 |
return await _extract_with_hf(image_bytes, page_num, total_pages)
|
|
|
|
|
|
|
| 147 |
else:
|
| 148 |
return await _extract_with_openrouter_single(image_bytes, page_num, total_pages)
|
| 149 |
|
|
@@ -155,7 +162,7 @@ async def extract_fields_from_document(
|
|
| 155 |
) -> Dict[str, Any]:
|
| 156 |
"""
|
| 157 |
Extract fields from document. Processes pages separately for better reliability.
|
| 158 |
-
Supports
|
| 159 |
"""
|
| 160 |
# Convert file to image blocks (handles PDF conversion)
|
| 161 |
image_blocks_data = _file_to_image_blocks(file_bytes, content_type)
|
|
@@ -324,6 +331,97 @@ async def _extract_with_openrouter_single(image_bytes: bytes, page_num: int, tot
|
|
| 324 |
return _parse_model_response(text, page_num)
|
| 325 |
|
| 326 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
async def _extract_with_hf(image_bytes: bytes, page_num: int, total_pages: int) -> Dict[str, Any]:
|
| 328 |
"""Extract from a single page using HuggingFace Inference API (router endpoint)."""
|
| 329 |
if not HF_TOKEN:
|
|
|
|
| 25 |
HF_INFERENCE_API_URL = "https://api-inference.huggingface.co/models"
|
| 26 |
HF_MODEL_NAME = os.environ.get("HF_MODEL_NAME", "Qwen/Qwen3-VL-235B-A22B-Instruct") # Default HF model
|
| 27 |
|
| 28 |
+
# OpenAI API
|
| 29 |
+
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
|
| 30 |
+
OPENAI_BASE_URL = "https://api.openai.com/v1/chat/completions"
|
| 31 |
+
OPENAI_MODEL_NAME = os.environ.get("OPENAI_MODEL_NAME", "gpt-4o") # Default OpenAI vision model
|
| 32 |
+
|
| 33 |
+
# Backend selection: "openrouter", "huggingface", or "openai"
|
| 34 |
EXTRACTION_BACKEND = os.environ.get("EXTRACTION_BACKEND", "openrouter").lower()
|
| 35 |
|
| 36 |
|
|
|
|
| 149 |
|
| 150 |
if backend == "huggingface":
|
| 151 |
return await _extract_with_hf(image_bytes, page_num, total_pages)
|
| 152 |
+
elif backend == "openai":
|
| 153 |
+
return await _extract_with_openai_single(image_bytes, page_num, total_pages)
|
| 154 |
else:
|
| 155 |
return await _extract_with_openrouter_single(image_bytes, page_num, total_pages)
|
| 156 |
|
|
|
|
| 162 |
) -> Dict[str, Any]:
|
| 163 |
"""
|
| 164 |
Extract fields from document. Processes pages separately for better reliability.
|
| 165 |
+
Supports OpenRouter, HuggingFace Inference API, and OpenAI Vision API.
|
| 166 |
"""
|
| 167 |
# Convert file to image blocks (handles PDF conversion)
|
| 168 |
image_blocks_data = _file_to_image_blocks(file_bytes, content_type)
|
|
|
|
| 331 |
return _parse_model_response(text, page_num)
|
| 332 |
|
| 333 |
|
| 334 |
+
async def _extract_with_openai_single(image_bytes: bytes, page_num: int, total_pages: int) -> Dict[str, Any]:
|
| 335 |
+
"""Extract from a single page using OpenAI GPT-4o Vision API."""
|
| 336 |
+
if not OPENAI_API_KEY:
|
| 337 |
+
raise RuntimeError("OPENAI_API_KEY environment variable is not set")
|
| 338 |
+
|
| 339 |
+
# Create single image block
|
| 340 |
+
data_url = _image_bytes_to_base64(image_bytes)
|
| 341 |
+
image_block = {
|
| 342 |
+
"type": "image_url",
|
| 343 |
+
"image_url": {"url": data_url}
|
| 344 |
+
}
|
| 345 |
+
|
| 346 |
+
system_prompt = (
|
| 347 |
+
"You are a document extraction engine with vision capabilities. "
|
| 348 |
+
"You read and extract text from documents in any language, preserving structure, formatting, and all content. "
|
| 349 |
+
"You output structured JSON with both the full extracted text and key-value pairs."
|
| 350 |
+
)
|
| 351 |
+
|
| 352 |
+
user_prompt = (
|
| 353 |
+
f"Read this document page ({page_num} of {total_pages}) using your vision capability and extract ALL text content. "
|
| 354 |
+
"I want the complete end-to-end text, preserving structure, headings, formatting, and content in all languages.\n\n"
|
| 355 |
+
"Extract every word, number, and piece of information, including any non-English text (Punjabi, Hindi, etc.).\n\n"
|
| 356 |
+
"Respond with JSON in this format:\n"
|
| 357 |
+
"{\n"
|
| 358 |
+
' "doc_type": "invoice | receipt | contract | report | notice | other",\n'
|
| 359 |
+
' "confidence": number between 0 and 100,\n'
|
| 360 |
+
' "full_text": "Complete extracted text from this page, preserving structure and formatting. Include all languages.",\n'
|
| 361 |
+
' "fields": {\n'
|
| 362 |
+
' "invoice_number": "...",\n'
|
| 363 |
+
' "date": "...",\n'
|
| 364 |
+
' "company_name": "...",\n'
|
| 365 |
+
' "address": "...",\n'
|
| 366 |
+
' "other_field": "..."\n'
|
| 367 |
+
" }\n"
|
| 368 |
+
"}\n\n"
|
| 369 |
+
"IMPORTANT:\n"
|
| 370 |
+
"- Extract ALL text from this page, including non-English languages\n"
|
| 371 |
+
"- Preserve structure, headings, and formatting\n"
|
| 372 |
+
"- Fill in fields with relevant extracted information\n"
|
| 373 |
+
"- If a field is not found, use empty string or omit it"
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
payload: Dict[str, Any] = {
|
| 377 |
+
"model": OPENAI_MODEL_NAME,
|
| 378 |
+
"messages": [
|
| 379 |
+
{
|
| 380 |
+
"role": "system",
|
| 381 |
+
"content": system_prompt,
|
| 382 |
+
},
|
| 383 |
+
{
|
| 384 |
+
"role": "user",
|
| 385 |
+
"content": [
|
| 386 |
+
{"type": "text", "text": user_prompt},
|
| 387 |
+
image_block
|
| 388 |
+
],
|
| 389 |
+
},
|
| 390 |
+
],
|
| 391 |
+
"max_tokens": 4096, # Similar to OpenRouter
|
| 392 |
+
"temperature": 0.1, # Lower temperature for more consistent extraction
|
| 393 |
+
}
|
| 394 |
+
|
| 395 |
+
headers = {
|
| 396 |
+
"Authorization": f"Bearer {OPENAI_API_KEY}",
|
| 397 |
+
"Content-Type": "application/json",
|
| 398 |
+
}
|
| 399 |
+
|
| 400 |
+
payload_size_mb = len(json.dumps(payload).encode('utf-8')) / 1024 / 1024
|
| 401 |
+
print(f"[INFO] OpenAI: Processing page {page_num} with model {OPENAI_MODEL_NAME}, payload: {payload_size_mb:.2f} MB")
|
| 402 |
+
|
| 403 |
+
try:
|
| 404 |
+
timeout = httpx.Timeout(180.0, connect=30.0) # 3 min per page
|
| 405 |
+
async with httpx.AsyncClient(timeout=timeout) as client:
|
| 406 |
+
resp = await client.post(OPENAI_BASE_URL, headers=headers, json=payload)
|
| 407 |
+
resp.raise_for_status()
|
| 408 |
+
data = resp.json()
|
| 409 |
+
except httpx.TimeoutException:
|
| 410 |
+
raise RuntimeError(f"OpenAI API timed out for page {page_num}")
|
| 411 |
+
except Exception as e:
|
| 412 |
+
error_msg = str(e)
|
| 413 |
+
print(f"[ERROR] OpenAI API error details: {type(e).__name__}: {error_msg}")
|
| 414 |
+
raise RuntimeError(f"OpenAI API error for page {page_num}: {error_msg}")
|
| 415 |
+
|
| 416 |
+
if "choices" not in data or len(data["choices"]) == 0:
|
| 417 |
+
raise ValueError(f"No choices in OpenAI response for page {page_num}")
|
| 418 |
+
|
| 419 |
+
response_text = data["choices"][0]["message"]["content"]
|
| 420 |
+
print(f"[DEBUG] OpenAI response preview: {response_text[:500]}")
|
| 421 |
+
|
| 422 |
+
return _parse_model_response(response_text, page_num)
|
| 423 |
+
|
| 424 |
+
|
| 425 |
async def _extract_with_hf(image_bytes: bytes, page_num: int, total_pages: int) -> Dict[str, Any]:
|
| 426 |
"""Extract from a single page using HuggingFace Inference API (router endpoint)."""
|
| 427 |
if not HF_TOKEN:
|