Spaces:
Runtime error
Runtime error
| # Adapted from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/pipelines/pipeline_animation.py | |
| import inspect | |
| import os | |
| import shutil | |
| from typing import Callable, List, Optional, Union | |
| import subprocess | |
| import numpy as np | |
| import torch | |
| import torchvision | |
| from diffusers.utils import is_accelerate_available | |
| from packaging import version | |
| from diffusers.configuration_utils import FrozenDict | |
| from diffusers.models import AutoencoderKL | |
| from diffusers.pipeline_utils import DiffusionPipeline | |
| from diffusers.schedulers import ( | |
| DDIMScheduler, | |
| DPMSolverMultistepScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| LMSDiscreteScheduler, | |
| PNDMScheduler, | |
| ) | |
| from diffusers.utils import deprecate, logging | |
| from einops import rearrange | |
| from ..models.unet import UNet3DConditionModel | |
| from ..utils.image_processor import ImageProcessor | |
| from ..utils.util import read_video, read_audio, write_video | |
| from ..whisper.audio2feature import Audio2Feature | |
| import tqdm | |
| import soundfile as sf | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class LipsyncPipeline(DiffusionPipeline): | |
| _optional_components = [] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| audio_encoder: Audio2Feature, | |
| unet: UNet3DConditionModel, | |
| scheduler: Union[ | |
| DDIMScheduler, | |
| PNDMScheduler, | |
| LMSDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| DPMSolverMultistepScheduler, | |
| ], | |
| ): | |
| super().__init__() | |
| if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: | |
| deprecation_message = ( | |
| f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" | |
| f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " | |
| "to update the config accordingly as leaving `steps_offset` might led to incorrect results" | |
| " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," | |
| " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" | |
| " file" | |
| ) | |
| deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) | |
| new_config = dict(scheduler.config) | |
| new_config["steps_offset"] = 1 | |
| scheduler._internal_dict = FrozenDict(new_config) | |
| if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: | |
| deprecation_message = ( | |
| f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." | |
| " `clip_sample` should be set to False in the configuration file. Please make sure to update the" | |
| " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" | |
| " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" | |
| " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" | |
| ) | |
| deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) | |
| new_config = dict(scheduler.config) | |
| new_config["clip_sample"] = False | |
| scheduler._internal_dict = FrozenDict(new_config) | |
| is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( | |
| version.parse(unet.config._diffusers_version).base_version | |
| ) < version.parse("0.9.0.dev0") | |
| is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 | |
| if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: | |
| deprecation_message = ( | |
| "The configuration file of the unet has set the default `sample_size` to smaller than" | |
| " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" | |
| " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" | |
| " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" | |
| " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" | |
| " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" | |
| " in the config might lead to incorrect results in future versions. If you have downloaded this" | |
| " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" | |
| " the `unet/config.json` file" | |
| ) | |
| deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) | |
| new_config = dict(unet.config) | |
| new_config["sample_size"] = 64 | |
| unet._internal_dict = FrozenDict(new_config) | |
| self.register_modules( | |
| vae=vae, | |
| audio_encoder=audio_encoder, | |
| unet=unet, | |
| scheduler=scheduler, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.set_progress_bar_config(desc="Steps") | |
| def enable_vae_slicing(self): | |
| self.vae.enable_slicing() | |
| def disable_vae_slicing(self): | |
| self.vae.disable_slicing() | |
| def enable_sequential_cpu_offload(self, gpu_id=0): | |
| if is_accelerate_available(): | |
| from accelerate import cpu_offload | |
| else: | |
| raise ImportError("Please install accelerate via `pip install accelerate`") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | |
| if cpu_offloaded_model is not None: | |
| cpu_offload(cpu_offloaded_model, device) | |
| def _execution_device(self): | |
| if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | |
| return self.device | |
| for module in self.unet.modules(): | |
| if ( | |
| hasattr(module, "_hf_hook") | |
| and hasattr(module._hf_hook, "execution_device") | |
| and module._hf_hook.execution_device is not None | |
| ): | |
| return torch.device(module._hf_hook.execution_device) | |
| return self.device | |
| def decode_latents(self, latents): | |
| latents = latents / self.vae.config.scaling_factor + self.vae.config.shift_factor | |
| latents = rearrange(latents, "b c f h w -> (b f) c h w") | |
| decoded_latents = self.vae.decode(latents).sample | |
| return decoded_latents | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs(self, height, width, callback_steps): | |
| assert height == width, "Height and width must be equal" | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if (callback_steps is None) or ( | |
| callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| def prepare_latents(self, batch_size, num_frames, num_channels_latents, height, width, dtype, device, generator): | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| 1, | |
| height // self.vae_scale_factor, | |
| width // self.vae_scale_factor, | |
| ) | |
| rand_device = "cpu" if device.type == "mps" else device | |
| latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device) | |
| latents = latents.repeat(1, 1, num_frames, 1, 1) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def prepare_mask_latents( | |
| self, mask, masked_image, height, width, dtype, device, generator, do_classifier_free_guidance | |
| ): | |
| # resize the mask to latents shape as we concatenate the mask to the latents | |
| # we do that before converting to dtype to avoid breaking in case we're using cpu_offload | |
| # and half precision | |
| mask = torch.nn.functional.interpolate( | |
| mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor) | |
| ) | |
| masked_image = masked_image.to(device=device, dtype=dtype) | |
| # encode the mask image into latents space so we can concatenate it to the latents | |
| masked_image_latents = self.vae.encode(masked_image).latent_dist.sample(generator=generator) | |
| masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor | |
| # aligning device to prevent device errors when concating it with the latent model input | |
| masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) | |
| mask = mask.to(device=device, dtype=dtype) | |
| # assume batch size = 1 | |
| mask = rearrange(mask, "f c h w -> 1 c f h w") | |
| masked_image_latents = rearrange(masked_image_latents, "f c h w -> 1 c f h w") | |
| mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask | |
| masked_image_latents = ( | |
| torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents | |
| ) | |
| return mask, masked_image_latents | |
| def prepare_image_latents(self, images, device, dtype, generator, do_classifier_free_guidance): | |
| images = images.to(device=device, dtype=dtype) | |
| image_latents = self.vae.encode(images).latent_dist.sample(generator=generator) | |
| image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor | |
| image_latents = rearrange(image_latents, "f c h w -> 1 c f h w") | |
| image_latents = torch.cat([image_latents] * 2) if do_classifier_free_guidance else image_latents | |
| return image_latents | |
| def set_progress_bar_config(self, **kwargs): | |
| if not hasattr(self, "_progress_bar_config"): | |
| self._progress_bar_config = {} | |
| self._progress_bar_config.update(kwargs) | |
| def paste_surrounding_pixels_back(decoded_latents, pixel_values, masks, device, weight_dtype): | |
| # Paste the surrounding pixels back, because we only want to change the mouth region | |
| pixel_values = pixel_values.to(device=device, dtype=weight_dtype) | |
| masks = masks.to(device=device, dtype=weight_dtype) | |
| combined_pixel_values = decoded_latents * masks + pixel_values * (1 - masks) | |
| return combined_pixel_values | |
| def pixel_values_to_images(pixel_values: torch.Tensor): | |
| pixel_values = rearrange(pixel_values, "f c h w -> f h w c") | |
| pixel_values = (pixel_values / 2 + 0.5).clamp(0, 1) | |
| images = (pixel_values * 255).to(torch.uint8) | |
| images = images.cpu().numpy() | |
| return images | |
| def affine_transform_video(self, video_path): | |
| video_frames = read_video(video_path, use_decord=False) | |
| faces = [] | |
| boxes = [] | |
| affine_matrices = [] | |
| print(f"Affine transforming {len(video_frames)} faces...") | |
| for frame in tqdm.tqdm(video_frames): | |
| face, box, affine_matrix = self.image_processor.affine_transform(frame) | |
| faces.append(face) | |
| boxes.append(box) | |
| affine_matrices.append(affine_matrix) | |
| faces = torch.stack(faces) | |
| return faces, video_frames, boxes, affine_matrices | |
| def restore_video(self, faces, video_frames, boxes, affine_matrices): | |
| video_frames = video_frames[: faces.shape[0]] | |
| out_frames = [] | |
| for index, face in enumerate(faces): | |
| x1, y1, x2, y2 = boxes[index] | |
| height = int(y2 - y1) | |
| width = int(x2 - x1) | |
| face = torchvision.transforms.functional.resize(face, size=(height, width), antialias=True) | |
| face = rearrange(face, "c h w -> h w c") | |
| face = (face / 2 + 0.5).clamp(0, 1) | |
| face = (face * 255).to(torch.uint8).cpu().numpy() | |
| out_frame = self.image_processor.restorer.restore_img(video_frames[index], face, affine_matrices[index]) | |
| out_frames.append(out_frame) | |
| return np.stack(out_frames, axis=0) | |
| def __call__( | |
| self, | |
| video_path: str, | |
| audio_path: str, | |
| video_out_path: str, | |
| video_mask_path: str = None, | |
| num_frames: int = 16, | |
| video_fps: int = 25, | |
| audio_sample_rate: int = 16000, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 20, | |
| guidance_scale: float = 1.5, | |
| weight_dtype: Optional[torch.dtype] = torch.float16, | |
| eta: float = 0.0, | |
| mask: str = "fix_mask", | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: Optional[int] = 1, | |
| **kwargs, | |
| ): | |
| is_train = self.unet.training | |
| self.unet.eval() | |
| # 0. Define call parameters | |
| batch_size = 1 | |
| device = self._execution_device | |
| self.image_processor = ImageProcessor(height, mask=mask, device="cuda") | |
| self.set_progress_bar_config(desc=f"Sample frames: {num_frames}") | |
| video_frames, original_video_frames, boxes, affine_matrices = self.affine_transform_video(video_path) | |
| audio_samples = read_audio(audio_path) | |
| # 1. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| # 2. Check inputs | |
| self.check_inputs(height, width, callback_steps) | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. set timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # 4. Prepare extra step kwargs. | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| self.video_fps = video_fps | |
| if self.unet.add_audio_layer: | |
| whisper_feature = self.audio_encoder.audio2feat(audio_path) | |
| whisper_chunks = self.audio_encoder.feature2chunks(feature_array=whisper_feature, fps=video_fps) | |
| num_inferences = min(len(video_frames), len(whisper_chunks)) // num_frames | |
| else: | |
| num_inferences = len(video_frames) // num_frames | |
| synced_video_frames = [] | |
| masked_video_frames = [] | |
| num_channels_latents = self.vae.config.latent_channels | |
| # Prepare latent variables | |
| all_latents = self.prepare_latents( | |
| batch_size, | |
| num_frames * num_inferences, | |
| num_channels_latents, | |
| height, | |
| width, | |
| weight_dtype, | |
| device, | |
| generator, | |
| ) | |
| for i in tqdm.tqdm(range(num_inferences), desc="Doing inference..."): | |
| if self.unet.add_audio_layer: | |
| audio_embeds = torch.stack(whisper_chunks[i * num_frames : (i + 1) * num_frames]) | |
| audio_embeds = audio_embeds.to(device, dtype=weight_dtype) | |
| if do_classifier_free_guidance: | |
| empty_audio_embeds = torch.zeros_like(audio_embeds) | |
| audio_embeds = torch.cat([empty_audio_embeds, audio_embeds]) | |
| else: | |
| audio_embeds = None | |
| inference_video_frames = video_frames[i * num_frames : (i + 1) * num_frames] | |
| latents = all_latents[:, :, i * num_frames : (i + 1) * num_frames] | |
| pixel_values, masked_pixel_values, masks = self.image_processor.prepare_masks_and_masked_images( | |
| inference_video_frames, affine_transform=False | |
| ) | |
| # 7. Prepare mask latent variables | |
| mask_latents, masked_image_latents = self.prepare_mask_latents( | |
| masks, | |
| masked_pixel_values, | |
| height, | |
| width, | |
| weight_dtype, | |
| device, | |
| generator, | |
| do_classifier_free_guidance, | |
| ) | |
| # 8. Prepare image latents | |
| image_latents = self.prepare_image_latents( | |
| pixel_values, | |
| device, | |
| weight_dtype, | |
| generator, | |
| do_classifier_free_guidance, | |
| ) | |
| # 9. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for j, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| # concat latents, mask, masked_image_latents in the channel dimension | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| latent_model_input = torch.cat( | |
| [latent_model_input, mask_latents, masked_image_latents, image_latents], dim=1 | |
| ) | |
| # predict the noise residual | |
| noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=audio_embeds).sample | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_audio = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_audio - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
| # call the callback, if provided | |
| if j == len(timesteps) - 1 or ((j + 1) > num_warmup_steps and (j + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and j % callback_steps == 0: | |
| callback(j, t, latents) | |
| # Recover the pixel values | |
| decoded_latents = self.decode_latents(latents) | |
| decoded_latents = self.paste_surrounding_pixels_back( | |
| decoded_latents, pixel_values, 1 - masks, device, weight_dtype | |
| ) | |
| synced_video_frames.append(decoded_latents) | |
| masked_video_frames.append(masked_pixel_values) | |
| synced_video_frames = self.restore_video( | |
| torch.cat(synced_video_frames), original_video_frames, boxes, affine_matrices | |
| ) | |
| masked_video_frames = self.restore_video( | |
| torch.cat(masked_video_frames), original_video_frames, boxes, affine_matrices | |
| ) | |
| audio_samples_remain_length = int(synced_video_frames.shape[0] / video_fps * audio_sample_rate) | |
| audio_samples = audio_samples[:audio_samples_remain_length].cpu().numpy() | |
| if is_train: | |
| self.unet.train() | |
| temp_dir = "temp" | |
| if os.path.exists(temp_dir): | |
| shutil.rmtree(temp_dir) | |
| os.makedirs(temp_dir, exist_ok=True) | |
| write_video(os.path.join(temp_dir, "video.mp4"), synced_video_frames, fps=25) | |
| # write_video(video_mask_path, masked_video_frames, fps=25) | |
| sf.write(os.path.join(temp_dir, "audio.wav"), audio_samples, audio_sample_rate) | |
| command = f"ffmpeg -y -loglevel error -nostdin -i {os.path.join(temp_dir, 'video.mp4')} -i {os.path.join(temp_dir, 'audio.wav')} -c:v libx264 -c:a aac -q:v 0 -q:a 0 {video_out_path}" | |
| subprocess.run(command, shell=True) | |