Spaces:
Running
Running
Commit
·
494bf87
1
Parent(s):
72ca5f8
newwww1w
Browse files- model/generate.py +237 -390
model/generate.py
CHANGED
|
@@ -5,411 +5,258 @@ import logging
|
|
| 5 |
import psutil
|
| 6 |
import re
|
| 7 |
import gc
|
| 8 |
-
from typing import List, Dict, Any, Optional, Tuple
|
| 9 |
-
from dataclasses import dataclass
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
logging.basicConfig(level=logging.INFO)
|
| 13 |
logger = logging.getLogger(__name__)
|
|
|
|
| 14 |
|
| 15 |
-
#
|
| 16 |
MEMORY_OPTIMIZED_MODELS = [
|
| 17 |
-
"
|
| 18 |
-
"
|
| 19 |
-
"
|
|
|
|
| 20 |
]
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
'keywords': ['validate', 'validation', 'input', 'format', 'check', 'verify', 'constraint'],
|
| 54 |
-
'priority': 'High',
|
| 55 |
-
'category': 'Functional',
|
| 56 |
-
'generator': 'generate_validation_tests'
|
| 57 |
-
},
|
| 58 |
-
'database': {
|
| 59 |
-
'keywords': ['database', 'db', 'store', 'save', 'persist', 'record', 'data storage', 'crud'],
|
| 60 |
-
'priority': 'Medium',
|
| 61 |
-
'category': 'Data',
|
| 62 |
-
'generator': 'generate_data_tests'
|
| 63 |
-
},
|
| 64 |
-
'performance': {
|
| 65 |
-
'keywords': ['performance', 'speed', 'time', 'response', 'load', 'concurrent', 'scalability'],
|
| 66 |
-
'priority': 'Medium',
|
| 67 |
-
'category': 'Performance',
|
| 68 |
-
'generator': 'generate_performance_tests'
|
| 69 |
-
},
|
| 70 |
-
'api': {
|
| 71 |
-
'keywords': ['api', 'endpoint', 'service', 'request', 'response', 'rest', 'http'],
|
| 72 |
-
'priority': 'High',
|
| 73 |
-
'category': 'Integration',
|
| 74 |
-
'generator': 'generate_api_tests'
|
| 75 |
-
},
|
| 76 |
-
'error_handling': {
|
| 77 |
-
'keywords': ['error', 'exception', 'failure', 'invalid', 'incorrect', 'wrong'],
|
| 78 |
-
'priority': 'High',
|
| 79 |
-
'category': 'Reliability',
|
| 80 |
-
'generator': 'generate_error_tests'
|
| 81 |
-
},
|
| 82 |
-
'security': {
|
| 83 |
-
'keywords': ['security', 'encrypt', 'secure', 'ssl', 'https', 'token', 'session'],
|
| 84 |
-
'priority': 'High',
|
| 85 |
-
'category': 'Security',
|
| 86 |
-
'generator': 'generate_security_tests'
|
| 87 |
-
}
|
| 88 |
-
}
|
| 89 |
-
|
| 90 |
-
class TestCaseGenerator:
|
| 91 |
-
"""Main class for generating test cases with AI and template fallback"""
|
| 92 |
-
|
| 93 |
-
def __init__(self):
|
| 94 |
-
self.model_name = None
|
| 95 |
-
self.tokenizer = None
|
| 96 |
-
self.model = None
|
| 97 |
-
self._initialize_model()
|
| 98 |
-
|
| 99 |
-
def _initialize_model(self):
|
| 100 |
-
"""Initialize the optimal model based on available memory"""
|
| 101 |
-
available_mem = psutil.virtual_memory().available / (1024 * 1024)
|
| 102 |
-
logger.info(f"Available memory: {available_mem:.1f}MB")
|
| 103 |
-
|
| 104 |
-
if available_mem < MIN_MEMORY_FOR_MODEL:
|
| 105 |
-
logger.warning("Insufficient memory for model loading, using template fallback")
|
| 106 |
-
return
|
| 107 |
-
|
| 108 |
-
# Try models in order of preference
|
| 109 |
-
for model_name in MEMORY_OPTIMIZED_MODELS:
|
| 110 |
-
try:
|
| 111 |
-
self.tokenizer, self.model = self._load_model_safely(model_name)
|
| 112 |
-
if self.model:
|
| 113 |
-
self.model_name = model_name
|
| 114 |
-
logger.info(f"Successfully loaded model: {model_name}")
|
| 115 |
-
break
|
| 116 |
-
except Exception as e:
|
| 117 |
-
logger.warning(f"Failed to load {model_name}: {str(e)}")
|
| 118 |
-
continue
|
| 119 |
-
|
| 120 |
-
def _load_model_safely(self, model_name: str) -> Tuple[Optional[AutoTokenizer], Optional[AutoModelForCausalLM]]:
|
| 121 |
-
"""Safely load model with memory optimizations"""
|
| 122 |
-
try:
|
| 123 |
-
logger.info(f"Attempting to load {model_name}")
|
| 124 |
-
|
| 125 |
-
# Load tokenizer first
|
| 126 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 127 |
-
model_name,
|
| 128 |
-
padding_side='left',
|
| 129 |
-
use_fast=True
|
| 130 |
-
)
|
| 131 |
-
|
| 132 |
-
# Ensure pad token is set
|
| 133 |
-
if tokenizer.pad_token is None:
|
| 134 |
-
tokenizer.pad_token = tokenizer.eos_token if tokenizer.eos_token else '[PAD]'
|
| 135 |
-
|
| 136 |
-
# Load model with optimized settings
|
| 137 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 138 |
-
model_name,
|
| 139 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 140 |
-
low_cpu_mem_usage=True,
|
| 141 |
-
device_map="auto" if torch.cuda.is_available() else None
|
| 142 |
-
)
|
| 143 |
-
|
| 144 |
-
# Explicitly move to CPU if needed
|
| 145 |
-
if not torch.cuda.is_available():
|
| 146 |
-
model = model.to('cpu')
|
| 147 |
-
|
| 148 |
-
model.eval()
|
| 149 |
-
return tokenizer, model
|
| 150 |
-
|
| 151 |
-
except Exception as e:
|
| 152 |
-
logger.error(f"Error loading model {model_name}: {str(e)}")
|
| 153 |
-
# Clean up if partial load occurred
|
| 154 |
-
if 'tokenizer' in locals():
|
| 155 |
-
del tokenizer
|
| 156 |
-
if 'model' in locals() and model:
|
| 157 |
-
del model
|
| 158 |
-
gc.collect()
|
| 159 |
-
if torch.cuda.is_available():
|
| 160 |
-
torch.cuda.empty_cache()
|
| 161 |
-
return None, None
|
| 162 |
-
|
| 163 |
-
def generate_test_cases(self, srs_text: str) -> List[TestCase]:
|
| 164 |
-
"""Generate test cases using best available method"""
|
| 165 |
-
# First try AI generation if model is available
|
| 166 |
-
if self.model and self.tokenizer:
|
| 167 |
-
try:
|
| 168 |
-
ai_cases = self._generate_with_ai(srs_text)
|
| 169 |
-
if ai_cases:
|
| 170 |
-
logger.info("Successfully generated test cases with AI")
|
| 171 |
-
return ai_cases[:MAX_TEST_CASES]
|
| 172 |
-
except Exception as e:
|
| 173 |
-
logger.warning(f"AI generation failed: {str(e)}, falling back to templates")
|
| 174 |
-
|
| 175 |
-
# Fall back to template-based generation
|
| 176 |
-
return self._generate_with_templates(srs_text)[:MAX_TEST_CASES]
|
| 177 |
-
|
| 178 |
-
def _generate_with_ai(self, srs_text: str) -> List[TestCase]:
|
| 179 |
-
"""Generate test cases using AI model"""
|
| 180 |
-
max_input_length = 500 # Increased from 300 for better context
|
| 181 |
-
prompt = f"""Generate comprehensive test cases for these software requirements:
|
| 182 |
-
{self._truncate_text(srs_text, max_input_length)}
|
| 183 |
-
|
| 184 |
-
Provide test cases in this format:
|
| 185 |
-
1. [Test Case Title]
|
| 186 |
-
- Description: [description]
|
| 187 |
-
- Steps: [step1; step2; step3]
|
| 188 |
-
- Expected: [expected result]
|
| 189 |
-
|
| 190 |
-
2. [Next Test Case Title]..."""
|
| 191 |
-
|
| 192 |
-
try:
|
| 193 |
-
inputs = self.tokenizer(
|
| 194 |
-
prompt,
|
| 195 |
-
return_tensors="pt",
|
| 196 |
-
max_length=512,
|
| 197 |
-
truncation=True,
|
| 198 |
-
padding=True,
|
| 199 |
-
return_attention_mask=True
|
| 200 |
-
)
|
| 201 |
-
|
| 202 |
-
# Generate with more controlled parameters
|
| 203 |
-
with torch.no_grad():
|
| 204 |
-
outputs = self.model.generate(
|
| 205 |
-
input_ids=inputs['input_ids'],
|
| 206 |
-
attention_mask=inputs['attention_mask'],
|
| 207 |
-
max_new_tokens=300,
|
| 208 |
-
num_return_sequences=1,
|
| 209 |
-
temperature=0.7,
|
| 210 |
-
top_p=0.9,
|
| 211 |
-
do_sample=True,
|
| 212 |
-
pad_token_id=self.tokenizer.pad_token_id,
|
| 213 |
-
eos_token_id=self.tokenizer.eos_token_id
|
| 214 |
-
)
|
| 215 |
-
|
| 216 |
-
generated = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 217 |
-
return self._parse_ai_output(generated)
|
| 218 |
-
|
| 219 |
-
except Exception as e:
|
| 220 |
-
logger.error(f"AI generation error: {str(e)}")
|
| 221 |
-
raise
|
| 222 |
-
finally:
|
| 223 |
-
# Clean up
|
| 224 |
-
if 'inputs' in locals():
|
| 225 |
-
del inputs
|
| 226 |
-
if 'outputs' in locals():
|
| 227 |
-
del outputs
|
| 228 |
-
gc.collect()
|
| 229 |
-
if torch.cuda.is_available():
|
| 230 |
-
torch.cuda.empty_cache()
|
| 231 |
-
|
| 232 |
-
def _parse_ai_output(self, text: str) -> List[TestCase]:
|
| 233 |
-
"""Parse AI-generated text into structured test cases"""
|
| 234 |
-
cases = []
|
| 235 |
-
current_case = None
|
| 236 |
-
|
| 237 |
-
for line in text.split('\n'):
|
| 238 |
-
line = line.strip()
|
| 239 |
-
if line.startswith(('1.', '2.', '3.', '4.', '5.', '6.', '7.', '8.', '9.')):
|
| 240 |
-
if current_case:
|
| 241 |
-
cases.append(current_case)
|
| 242 |
-
title = line[2:].strip()
|
| 243 |
-
current_case = TestCase(
|
| 244 |
-
id=f"TC_AI_{len(cases)+1:03d}",
|
| 245 |
-
title=title,
|
| 246 |
-
description="",
|
| 247 |
-
preconditions=["System is accessible"],
|
| 248 |
-
steps=[],
|
| 249 |
-
expected="",
|
| 250 |
-
postconditions=["Test executed"],
|
| 251 |
-
test_data="As specified in requirements",
|
| 252 |
-
priority="Medium",
|
| 253 |
-
category="Functional"
|
| 254 |
-
)
|
| 255 |
-
elif line.lower().startswith('description:') and current_case:
|
| 256 |
-
current_case.description = line[12:].strip()
|
| 257 |
-
elif line.lower().startswith('steps:') and current_case:
|
| 258 |
-
steps = line[6:].strip().split(';')
|
| 259 |
-
current_case.steps = [s.strip() for s in steps if s.strip()]
|
| 260 |
-
elif line.lower().startswith('expected:') and current_case:
|
| 261 |
-
current_case.expected = line[9:].strip()
|
| 262 |
-
|
| 263 |
-
if current_case:
|
| 264 |
-
cases.append(current_case)
|
| 265 |
-
|
| 266 |
-
return cases or [self._create_fallback_case()]
|
| 267 |
-
|
| 268 |
-
def _generate_with_templates(self, srs_text: str) -> List[TestCase]:
|
| 269 |
-
"""Generate test cases using pattern matching and templates"""
|
| 270 |
-
patterns = self._analyze_requirements(srs_text)
|
| 271 |
-
test_cases = []
|
| 272 |
-
|
| 273 |
-
for pattern_name, pattern_data in patterns.items():
|
| 274 |
-
generator_name = REQUIREMENT_PATTERNS[pattern_name]['generator']
|
| 275 |
-
generator = getattr(self, generator_name, self._generate_generic_tests)
|
| 276 |
-
cases = generator(pattern_data['matches'])
|
| 277 |
-
|
| 278 |
-
for i, case in enumerate(cases):
|
| 279 |
-
case.id = f"TC_{pattern_name.upper()}_{i+1:03d}"
|
| 280 |
-
case.priority = pattern_data['priority']
|
| 281 |
-
case.category = pattern_data['category']
|
| 282 |
-
test_cases.append(case)
|
| 283 |
-
|
| 284 |
-
return test_cases or [self._create_fallback_case()]
|
| 285 |
-
|
| 286 |
-
def _analyze_requirements(self, text: str) -> Dict[str, Any]:
|
| 287 |
-
"""Analyze text to detect requirement patterns"""
|
| 288 |
-
text_lower = text.lower()
|
| 289 |
-
detected = {}
|
| 290 |
-
|
| 291 |
-
for name, info in REQUIREMENT_PATTERNS.items():
|
| 292 |
-
matches = []
|
| 293 |
-
for kw in info['keywords']:
|
| 294 |
-
if kw in text_lower:
|
| 295 |
-
# Find context around keyword
|
| 296 |
-
context = re.findall(rf'.{{0,50}}{re.escape(kw)}.{{0,50}}', text_lower)
|
| 297 |
-
matches.extend(context[:3]) # Limit contexts
|
| 298 |
-
|
| 299 |
-
if matches:
|
| 300 |
-
detected[name] = {
|
| 301 |
-
'matches': matches,
|
| 302 |
-
'priority': info['priority'],
|
| 303 |
-
'category': info['category']
|
| 304 |
-
}
|
| 305 |
-
|
| 306 |
-
return detected
|
| 307 |
-
|
| 308 |
-
def _create_fallback_case(self) -> TestCase:
|
| 309 |
-
"""Create a generic fallback test case"""
|
| 310 |
-
return TestCase(
|
| 311 |
-
id="TC_GEN_001",
|
| 312 |
-
title="General Functionality Test",
|
| 313 |
-
description="Verify basic system functionality",
|
| 314 |
-
preconditions=["System is accessible"],
|
| 315 |
-
steps=["Execute core functionality"],
|
| 316 |
-
expected="System behaves as expected",
|
| 317 |
-
postconditions=["Test completed"],
|
| 318 |
-
test_data="Standard test data",
|
| 319 |
-
priority="Medium",
|
| 320 |
-
category="Functional"
|
| 321 |
)
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
"
|
| 330 |
-
return
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
]
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 368 |
)
|
| 369 |
-
]
|
| 370 |
-
|
| 371 |
-
# Additional generator methods for other test types...
|
| 372 |
-
# generate_performance_tests, generate_api_tests, etc.
|
| 373 |
|
| 374 |
-
|
| 375 |
-
|
|
|
|
|
|
|
| 376 |
|
| 377 |
-
|
| 378 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 379 |
global _generator_instance
|
| 380 |
if _generator_instance is None:
|
| 381 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 382 |
return _generator_instance
|
| 383 |
|
| 384 |
-
def
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
return {
|
| 396 |
-
"model":
|
| 397 |
-
"algorithm":
|
| 398 |
-
"
|
| 399 |
-
"
|
| 400 |
}
|
| 401 |
|
| 402 |
-
#
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
""
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
print(f"Priority: {case['priority']}, Category: {case['category']}")
|
| 415 |
-
print(f"Steps: {case['steps']}")
|
|
|
|
| 5 |
import psutil
|
| 6 |
import re
|
| 7 |
import gc
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
# Initialize logger
|
|
|
|
| 10 |
logger = logging.getLogger(__name__)
|
| 11 |
+
logging.basicConfig(level=logging.INFO)
|
| 12 |
|
| 13 |
+
# List of memory-optimized models
|
| 14 |
MEMORY_OPTIMIZED_MODELS = [
|
| 15 |
+
"gpt2", # ~500MB
|
| 16 |
+
"distilgpt2", # ~250MB
|
| 17 |
+
"microsoft/DialoGPT-small", # ~250MB
|
| 18 |
+
"huggingface/CodeBERTa-small-v1", # Code tasks
|
| 19 |
]
|
| 20 |
|
| 21 |
+
# Singleton state
|
| 22 |
+
_generator_instance = None
|
| 23 |
+
|
| 24 |
+
def get_optimal_model_for_memory():
|
| 25 |
+
"""Select the best model based on available memory."""
|
| 26 |
+
available_memory = psutil.virtual_memory().available / (1024 * 1024) # MB
|
| 27 |
+
logger.info(f"Available memory: {available_memory:.1f}MB")
|
| 28 |
+
|
| 29 |
+
if available_memory < 300:
|
| 30 |
+
return None # Use template fallback
|
| 31 |
+
elif available_memory < 600:
|
| 32 |
+
return "microsoft/DialoGPT-small"
|
| 33 |
+
else:
|
| 34 |
+
return "distilgpt2"
|
| 35 |
+
|
| 36 |
+
def load_model_with_memory_optimization(model_name):
|
| 37 |
+
"""Load model with low memory settings."""
|
| 38 |
+
try:
|
| 39 |
+
logger.info(f"Loading {model_name} with memory optimizations...")
|
| 40 |
+
|
| 41 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side='left', use_fast=True)
|
| 42 |
+
|
| 43 |
+
if tokenizer.pad_token is None:
|
| 44 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 45 |
+
|
| 46 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 47 |
+
model_name,
|
| 48 |
+
torch_dtype=torch.float16,
|
| 49 |
+
device_map="cpu",
|
| 50 |
+
low_cpu_mem_usage=True,
|
| 51 |
+
use_cache=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
)
|
| 53 |
+
|
| 54 |
+
model.eval()
|
| 55 |
+
model.gradient_checkpointing_enable()
|
| 56 |
+
logger.info(f"✅ Model {model_name} loaded successfully")
|
| 57 |
+
return tokenizer, model
|
| 58 |
+
|
| 59 |
+
except Exception as e:
|
| 60 |
+
logger.error(f"❌ Failed to load model {model_name}: {e}")
|
| 61 |
+
return None, None
|
| 62 |
+
|
| 63 |
+
def extract_keywords(text):
|
| 64 |
+
common_keywords = [
|
| 65 |
+
'login', 'authentication', 'user', 'password', 'database', 'data',
|
| 66 |
+
'interface', 'api', 'function', 'feature', 'requirement', 'system',
|
| 67 |
+
'input', 'output', 'validation', 'error', 'security', 'performance'
|
| 68 |
+
]
|
| 69 |
+
words = re.findall(r'\b\w+\b', text.lower())
|
| 70 |
+
return [word for word in words if word in common_keywords]
|
| 71 |
+
|
| 72 |
+
def generate_template_based_test_cases(srs_text):
|
| 73 |
+
keywords = extract_keywords(srs_text)
|
| 74 |
+
test_cases = []
|
| 75 |
+
|
| 76 |
+
if any(word in keywords for word in ['login', 'authentication', 'user', 'password']):
|
| 77 |
+
test_cases.extend([
|
| 78 |
+
{
|
| 79 |
+
"id": "TC_001",
|
| 80 |
+
"title": "Valid Login Test",
|
| 81 |
+
"description": "Test login with valid credentials",
|
| 82 |
+
"steps": ["Enter valid username", "Enter valid password", "Click login"],
|
| 83 |
+
"expected": "User should be logged in successfully"
|
| 84 |
+
},
|
| 85 |
+
{
|
| 86 |
+
"id": "TC_002",
|
| 87 |
+
"title": "Invalid Login Test",
|
| 88 |
+
"description": "Test login with invalid credentials",
|
| 89 |
+
"steps": ["Enter invalid username", "Enter invalid password", "Click login"],
|
| 90 |
+
"expected": "Error message should be displayed"
|
| 91 |
+
}
|
| 92 |
+
])
|
| 93 |
+
|
| 94 |
+
if any(word in keywords for word in ['database', 'data', 'store', 'save']):
|
| 95 |
+
test_cases.append({
|
| 96 |
+
"id": "TC_003",
|
| 97 |
+
"title": "Data Storage Test",
|
| 98 |
+
"description": "Test data storage functionality",
|
| 99 |
+
"steps": ["Enter data", "Save data", "Verify storage"],
|
| 100 |
+
"expected": "Data should be stored correctly"
|
| 101 |
+
})
|
| 102 |
+
|
| 103 |
+
if not test_cases:
|
| 104 |
+
test_cases = [
|
| 105 |
+
{
|
| 106 |
+
"id": "TC_001",
|
| 107 |
+
"title": "Basic Functionality Test",
|
| 108 |
+
"description": "Test basic system functionality",
|
| 109 |
+
"steps": ["Access the system", "Perform basic operations", "Verify results"],
|
| 110 |
+
"expected": "System should work as expected"
|
| 111 |
+
}
|
| 112 |
]
|
| 113 |
+
|
| 114 |
+
return test_cases
|
| 115 |
+
|
| 116 |
+
def parse_generated_test_cases(generated_text):
|
| 117 |
+
lines = generated_text.split('\n')
|
| 118 |
+
test_cases = []
|
| 119 |
+
current_case = {}
|
| 120 |
+
case_counter = 1
|
| 121 |
+
|
| 122 |
+
for line in lines:
|
| 123 |
+
line = line.strip()
|
| 124 |
+
if line.startswith(('1.', '2.', '3.', 'TC', 'Test')):
|
| 125 |
+
if current_case:
|
| 126 |
+
test_cases.append(current_case)
|
| 127 |
+
current_case = {
|
| 128 |
+
"id": f"TC_{case_counter:03d}",
|
| 129 |
+
"title": line,
|
| 130 |
+
"description": line,
|
| 131 |
+
"steps": ["Execute the test"],
|
| 132 |
+
"expected": "Test should pass"
|
| 133 |
+
}
|
| 134 |
+
case_counter += 1
|
| 135 |
+
|
| 136 |
+
if current_case:
|
| 137 |
+
test_cases.append(current_case)
|
| 138 |
+
|
| 139 |
+
if not test_cases:
|
| 140 |
+
return [{
|
| 141 |
+
"id": "TC_001",
|
| 142 |
+
"title": "Generated Test Case",
|
| 143 |
+
"description": "Auto-generated test case based on requirements",
|
| 144 |
+
"steps": ["Review requirements", "Execute test", "Verify results"],
|
| 145 |
+
"expected": "Requirements should be met"
|
| 146 |
+
}]
|
| 147 |
+
|
| 148 |
+
return test_cases
|
| 149 |
+
|
| 150 |
+
def generate_with_ai_model(srs_text, tokenizer, model):
|
| 151 |
+
max_input_length = 200
|
| 152 |
+
if len(srs_text) > max_input_length:
|
| 153 |
+
srs_text = srs_text[:max_input_length]
|
| 154 |
+
|
| 155 |
+
prompt = f"""Generate test cases for this software requirement:
|
| 156 |
+
{srs_text}
|
| 157 |
+
|
| 158 |
+
Test Cases:
|
| 159 |
+
1."""
|
| 160 |
+
|
| 161 |
+
try:
|
| 162 |
+
inputs = tokenizer.encode(
|
| 163 |
+
prompt,
|
| 164 |
+
return_tensors="pt",
|
| 165 |
+
max_length=150,
|
| 166 |
+
truncation=True
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
with torch.no_grad():
|
| 170 |
+
outputs = model.generate(
|
| 171 |
+
inputs,
|
| 172 |
+
max_new_tokens=100,
|
| 173 |
+
num_return_sequences=1,
|
| 174 |
+
temperature=0.7,
|
| 175 |
+
do_sample=True,
|
| 176 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 177 |
+
use_cache=False,
|
| 178 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 181 |
+
del inputs, outputs
|
| 182 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
| 183 |
+
return parse_generated_test_cases(generated_text)
|
| 184 |
|
| 185 |
+
except Exception as e:
|
| 186 |
+
logger.error(f"❌ AI generation failed: {e}")
|
| 187 |
+
raise
|
| 188 |
+
|
| 189 |
+
def generate_with_fallback(srs_text):
|
| 190 |
+
model_name = get_optimal_model_for_memory()
|
| 191 |
+
|
| 192 |
+
if model_name:
|
| 193 |
+
tokenizer, model = load_model_with_memory_optimization(model_name)
|
| 194 |
+
if tokenizer and model:
|
| 195 |
+
try:
|
| 196 |
+
test_cases = generate_with_ai_model(srs_text, tokenizer, model)
|
| 197 |
+
reason = get_algorithm_reason(model_name)
|
| 198 |
+
return test_cases, model_name, "transformer (causal LM)", reason
|
| 199 |
+
except Exception as e:
|
| 200 |
+
logger.warning(f"AI generation failed: {e}, falling back to templates")
|
| 201 |
+
|
| 202 |
+
logger.info("⚠️ Using fallback template-based generation")
|
| 203 |
+
test_cases = generate_template_based_test_cases(srs_text)
|
| 204 |
+
return test_cases, "Template-Based Generator", "rule-based", "Low memory - fallback to rule-based generation"
|
| 205 |
+
|
| 206 |
+
# ✅ Function exposed to app.py
|
| 207 |
+
def generate_test_cases(srs_text):
|
| 208 |
+
return generate_with_fallback(srs_text)[0]
|
| 209 |
+
|
| 210 |
+
def get_generator():
|
| 211 |
global _generator_instance
|
| 212 |
if _generator_instance is None:
|
| 213 |
+
class Generator:
|
| 214 |
+
def __init__(self):
|
| 215 |
+
self.model_name = get_optimal_model_for_memory()
|
| 216 |
+
self.tokenizer = None
|
| 217 |
+
self.model = None
|
| 218 |
+
if self.model_name:
|
| 219 |
+
self.tokenizer, self.model = load_model_with_memory_optimization(self.model_name)
|
| 220 |
+
|
| 221 |
+
def get_model_info(self):
|
| 222 |
+
mem = psutil.Process().memory_info().rss / 1024 / 1024
|
| 223 |
+
return {
|
| 224 |
+
"model_name": self.model_name if self.model_name else "Template-Based Generator",
|
| 225 |
+
"status": "loaded" if self.model else "template_mode",
|
| 226 |
+
"memory_usage": f"{mem:.1f}MB",
|
| 227 |
+
"optimization": "low_memory"
|
| 228 |
+
}
|
| 229 |
+
|
| 230 |
+
_generator_instance = Generator()
|
| 231 |
+
|
| 232 |
return _generator_instance
|
| 233 |
|
| 234 |
+
def monitor_memory():
|
| 235 |
+
mem = psutil.Process().memory_info().rss / 1024 / 1024
|
| 236 |
+
logger.info(f"Memory usage: {mem:.1f}MB")
|
| 237 |
+
if mem > 450:
|
| 238 |
+
gc.collect()
|
| 239 |
+
logger.info("Memory cleanup triggered")
|
| 240 |
+
|
| 241 |
+
# ✅ NEW FUNCTION for enhanced output: test cases + model info + reason
|
| 242 |
+
def generate_test_cases_and_info(input_text):
|
| 243 |
+
test_cases, model_name, algorithm_used, reason = generate_with_fallback(input_text)
|
|
|
|
| 244 |
return {
|
| 245 |
+
"model": model_name,
|
| 246 |
+
"algorithm": algorithm_used,
|
| 247 |
+
"reason": reason,
|
| 248 |
+
"test_cases": test_cases
|
| 249 |
}
|
| 250 |
|
| 251 |
+
# ✅ Explain why each algorithm is selected
|
| 252 |
+
def get_algorithm_reason(model_name):
|
| 253 |
+
if model_name == "microsoft/DialoGPT-small":
|
| 254 |
+
return "Selected due to low memory availability; DialoGPT-small provides conversational understanding in limited memory environments."
|
| 255 |
+
elif model_name == "distilgpt2":
|
| 256 |
+
return "Selected for its balance between performance and low memory usage. Ideal for small environments needing causal language modeling."
|
| 257 |
+
elif model_name == "gpt2":
|
| 258 |
+
return "Chosen for general-purpose text generation with moderate memory headroom."
|
| 259 |
+
elif model_name is None:
|
| 260 |
+
return "No model used due to insufficient memory. Rule-based template generation chosen instead."
|
| 261 |
+
else:
|
| 262 |
+
return "Model selected based on best tradeoff between memory usage and language generation capability."
|
|
|
|
|
|