Spaces:
Runtime error
Runtime error
Rename cond_tau to adapter_conditioning_factor
Browse files- app_base.py +7 -6
- app_sketch.py +7 -6
- model.py +2 -2
app_base.py
CHANGED
|
@@ -28,7 +28,7 @@ def create_demo(model: Model) -> gr.Blocks:
|
|
| 28 |
num_inference_steps: int = 30,
|
| 29 |
guidance_scale: float = 5.0,
|
| 30 |
adapter_conditioning_scale: float = 1.0,
|
| 31 |
-
|
| 32 |
seed: int = 0,
|
| 33 |
apply_preprocess: bool = True,
|
| 34 |
progress=gr.Progress(track_tqdm=True),
|
|
@@ -43,7 +43,7 @@ def create_demo(model: Model) -> gr.Blocks:
|
|
| 43 |
num_inference_steps=num_inference_steps,
|
| 44 |
guidance_scale=guidance_scale,
|
| 45 |
adapter_conditioning_scale=adapter_conditioning_scale,
|
| 46 |
-
|
| 47 |
seed=seed,
|
| 48 |
apply_preprocess=apply_preprocess,
|
| 49 |
)
|
|
@@ -130,14 +130,15 @@ def create_demo(model: Model) -> gr.Blocks:
|
|
| 130 |
value=5.0,
|
| 131 |
)
|
| 132 |
adapter_conditioning_scale = gr.Slider(
|
| 133 |
-
label="Adapter
|
| 134 |
minimum=0.5,
|
| 135 |
maximum=1,
|
| 136 |
step=0.1,
|
| 137 |
value=1.0,
|
| 138 |
)
|
| 139 |
-
|
| 140 |
-
label="
|
|
|
|
| 141 |
minimum=0.5,
|
| 142 |
maximum=1.0,
|
| 143 |
step=0.1,
|
|
@@ -177,7 +178,7 @@ def create_demo(model: Model) -> gr.Blocks:
|
|
| 177 |
num_inference_steps,
|
| 178 |
guidance_scale,
|
| 179 |
adapter_conditioning_scale,
|
| 180 |
-
|
| 181 |
seed,
|
| 182 |
apply_preprocess,
|
| 183 |
]
|
|
|
|
| 28 |
num_inference_steps: int = 30,
|
| 29 |
guidance_scale: float = 5.0,
|
| 30 |
adapter_conditioning_scale: float = 1.0,
|
| 31 |
+
adapter_conditioning_factor: float = 1.0,
|
| 32 |
seed: int = 0,
|
| 33 |
apply_preprocess: bool = True,
|
| 34 |
progress=gr.Progress(track_tqdm=True),
|
|
|
|
| 43 |
num_inference_steps=num_inference_steps,
|
| 44 |
guidance_scale=guidance_scale,
|
| 45 |
adapter_conditioning_scale=adapter_conditioning_scale,
|
| 46 |
+
adapter_conditioning_factor=adapter_conditioning_factor,
|
| 47 |
seed=seed,
|
| 48 |
apply_preprocess=apply_preprocess,
|
| 49 |
)
|
|
|
|
| 130 |
value=5.0,
|
| 131 |
)
|
| 132 |
adapter_conditioning_scale = gr.Slider(
|
| 133 |
+
label="Adapter conditioning scale",
|
| 134 |
minimum=0.5,
|
| 135 |
maximum=1,
|
| 136 |
step=0.1,
|
| 137 |
value=1.0,
|
| 138 |
)
|
| 139 |
+
adapter_conditioning_factor = gr.Slider(
|
| 140 |
+
label="Adapter conditioning factor",
|
| 141 |
+
info="Fraction of timesteps for which adapter should be applied",
|
| 142 |
minimum=0.5,
|
| 143 |
maximum=1.0,
|
| 144 |
step=0.1,
|
|
|
|
| 178 |
num_inference_steps,
|
| 179 |
guidance_scale,
|
| 180 |
adapter_conditioning_scale,
|
| 181 |
+
adapter_conditioning_factor,
|
| 182 |
seed,
|
| 183 |
apply_preprocess,
|
| 184 |
]
|
app_sketch.py
CHANGED
|
@@ -26,7 +26,7 @@ def create_demo(model: Model) -> gr.Blocks:
|
|
| 26 |
num_steps: int = 25,
|
| 27 |
guidance_scale: float = 5,
|
| 28 |
adapter_conditioning_scale: float = 0.8,
|
| 29 |
-
|
| 30 |
seed: int = 0,
|
| 31 |
progress=gr.Progress(track_tqdm=True),
|
| 32 |
) -> PIL.Image.Image:
|
|
@@ -44,7 +44,7 @@ def create_demo(model: Model) -> gr.Blocks:
|
|
| 44 |
num_inference_steps=num_steps,
|
| 45 |
guidance_scale=guidance_scale,
|
| 46 |
adapter_conditioning_scale=adapter_conditioning_scale,
|
| 47 |
-
|
| 48 |
seed=seed,
|
| 49 |
apply_preprocess=False,
|
| 50 |
)[1]
|
|
@@ -83,14 +83,15 @@ def create_demo(model: Model) -> gr.Blocks:
|
|
| 83 |
value=5,
|
| 84 |
)
|
| 85 |
adapter_conditioning_scale = gr.Slider(
|
| 86 |
-
label="Adapter
|
| 87 |
minimum=0.5,
|
| 88 |
maximum=1,
|
| 89 |
step=0.1,
|
| 90 |
value=0.8,
|
| 91 |
)
|
| 92 |
-
|
| 93 |
-
label="
|
|
|
|
| 94 |
minimum=0.5,
|
| 95 |
maximum=1,
|
| 96 |
step=0.1,
|
|
@@ -115,7 +116,7 @@ def create_demo(model: Model) -> gr.Blocks:
|
|
| 115 |
num_steps,
|
| 116 |
guidance_scale,
|
| 117 |
adapter_conditioning_scale,
|
| 118 |
-
|
| 119 |
seed,
|
| 120 |
]
|
| 121 |
prompt.submit(
|
|
|
|
| 26 |
num_steps: int = 25,
|
| 27 |
guidance_scale: float = 5,
|
| 28 |
adapter_conditioning_scale: float = 0.8,
|
| 29 |
+
adapter_conditioning_factor: float = 0.8,
|
| 30 |
seed: int = 0,
|
| 31 |
progress=gr.Progress(track_tqdm=True),
|
| 32 |
) -> PIL.Image.Image:
|
|
|
|
| 44 |
num_inference_steps=num_steps,
|
| 45 |
guidance_scale=guidance_scale,
|
| 46 |
adapter_conditioning_scale=adapter_conditioning_scale,
|
| 47 |
+
adapter_conditioning_factor=adapter_conditioning_factor,
|
| 48 |
seed=seed,
|
| 49 |
apply_preprocess=False,
|
| 50 |
)[1]
|
|
|
|
| 83 |
value=5,
|
| 84 |
)
|
| 85 |
adapter_conditioning_scale = gr.Slider(
|
| 86 |
+
label="Adapter conditioning scale",
|
| 87 |
minimum=0.5,
|
| 88 |
maximum=1,
|
| 89 |
step=0.1,
|
| 90 |
value=0.8,
|
| 91 |
)
|
| 92 |
+
adapter_conditioning_factor = gr.Slider(
|
| 93 |
+
label="Adapter conditioning factor",
|
| 94 |
+
info="Fraction of timesteps for which adapter should be applied",
|
| 95 |
minimum=0.5,
|
| 96 |
maximum=1,
|
| 97 |
step=0.1,
|
|
|
|
| 116 |
num_steps,
|
| 117 |
guidance_scale,
|
| 118 |
adapter_conditioning_scale,
|
| 119 |
+
adapter_conditioning_factor,
|
| 120 |
seed,
|
| 121 |
]
|
| 122 |
prompt.submit(
|
model.py
CHANGED
|
@@ -317,7 +317,7 @@ class Model:
|
|
| 317 |
num_inference_steps: int = 30,
|
| 318 |
guidance_scale: float = 5.0,
|
| 319 |
adapter_conditioning_scale: float = 1.0,
|
| 320 |
-
|
| 321 |
seed: int = 0,
|
| 322 |
apply_preprocess: bool = True,
|
| 323 |
) -> list[PIL.Image.Image]:
|
|
@@ -344,7 +344,7 @@ class Model:
|
|
| 344 |
image=image,
|
| 345 |
num_inference_steps=num_inference_steps,
|
| 346 |
adapter_conditioning_scale=adapter_conditioning_scale,
|
| 347 |
-
adapter_conditioning_factor=
|
| 348 |
generator=generator,
|
| 349 |
guidance_scale=guidance_scale,
|
| 350 |
).images[0]
|
|
|
|
| 317 |
num_inference_steps: int = 30,
|
| 318 |
guidance_scale: float = 5.0,
|
| 319 |
adapter_conditioning_scale: float = 1.0,
|
| 320 |
+
adapter_conditioning_factor: float = 1.0,
|
| 321 |
seed: int = 0,
|
| 322 |
apply_preprocess: bool = True,
|
| 323 |
) -> list[PIL.Image.Image]:
|
|
|
|
| 344 |
image=image,
|
| 345 |
num_inference_steps=num_inference_steps,
|
| 346 |
adapter_conditioning_scale=adapter_conditioning_scale,
|
| 347 |
+
adapter_conditioning_factor=adapter_conditioning_factor,
|
| 348 |
generator=generator,
|
| 349 |
guidance_scale=guidance_scale,
|
| 350 |
).images[0]
|