Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,15 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import random
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
from diffusers import
|
| 7 |
import torch
|
| 8 |
from typing import Tuple
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
model_repo_id = "RunDiffusion/Juggernaut-XL-v9" # Replace to the model you would like to use
|
|
@@ -27,16 +31,23 @@ pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
| 27 |
)
|
| 28 |
pipe.to(device)
|
| 29 |
|
| 30 |
-
|
| 31 |
-
"
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
MAX_SEED = np.iinfo(np.int32).max
|
| 42 |
MAX_IMAGE_SIZE = 4096
|
|
@@ -104,19 +115,22 @@ def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str
|
|
| 104 |
negative = ""
|
| 105 |
return p.replace("{prompt}", positive), n + negative
|
| 106 |
|
| 107 |
-
@spaces.GPU
|
| 108 |
def infer(
|
| 109 |
prompt,
|
| 110 |
negative_prompt,
|
| 111 |
style,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
seed,
|
| 113 |
randomize_seed,
|
| 114 |
width,
|
| 115 |
height,
|
| 116 |
guidance_scale,
|
| 117 |
num_inference_steps,
|
| 118 |
-
input_image=None, # New parameter for input image
|
| 119 |
-
strength=0.8, # New parameter for img2img strength
|
| 120 |
progress=gr.Progress(track_tqdm=True),
|
| 121 |
):
|
| 122 |
if randomize_seed:
|
|
@@ -124,71 +138,94 @@ def infer(
|
|
| 124 |
prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
|
| 125 |
generator = torch.Generator().manual_seed(seed)
|
| 126 |
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
strength=strength, # Control how much the image is changed
|
| 133 |
-
negative_prompt=negative_prompt,
|
| 134 |
-
guidance_scale=guidance_scale,
|
| 135 |
-
num_inference_steps=num_inference_steps,
|
| 136 |
-
generator=generator,
|
| 137 |
-
).images[0]
|
| 138 |
-
else:
|
| 139 |
-
# Use text2img pipeline otherwise
|
| 140 |
-
image = pipe(
|
| 141 |
-
prompt=prompt,
|
| 142 |
-
negative_prompt=negative_prompt,
|
| 143 |
-
guidance_scale=guidance_scale,
|
| 144 |
-
num_inference_steps=num_inference_steps,
|
| 145 |
-
width=width,
|
| 146 |
-
height=height,
|
| 147 |
-
generator=generator,
|
| 148 |
-
).images[0]
|
| 149 |
|
| 150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
examples = [
|
| 154 |
-
"
|
| 155 |
-
"
|
| 156 |
-
"
|
| 157 |
]
|
| 158 |
-
|
| 159 |
-
css = """
|
| 160 |
-
#col-container {
|
| 161 |
margin: 0 auto;
|
| 162 |
max-width: 640px;
|
| 163 |
-
}
|
| 164 |
-
"""
|
| 165 |
|
| 166 |
with gr.Blocks(css=css) as demo:
|
| 167 |
with gr.Column(elem_id="col-container"):
|
| 168 |
-
gr.Markdown(" #
|
| 169 |
with gr.Row():
|
| 170 |
prompt = gr.Text(
|
| 171 |
label="Prompt",
|
| 172 |
show_label=False,
|
| 173 |
max_lines=1,
|
| 174 |
-
placeholder="
|
| 175 |
container=False,
|
| 176 |
)
|
| 177 |
-
run_button = gr.Button("
|
| 178 |
result = gr.Image(label="Result", show_label=False)
|
| 179 |
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
with gr.Row(visible=True):
|
| 194 |
style_selection = gr.Radio(
|
|
@@ -199,15 +236,13 @@ with gr.Blocks(css=css) as demo:
|
|
| 199 |
value=DEFAULT_STYLE_NAME,
|
| 200 |
label="Image Style",
|
| 201 |
)
|
| 202 |
-
|
| 203 |
with gr.Accordion("Advanced Settings", open=False):
|
| 204 |
negative_prompt = gr.Text(
|
| 205 |
label="Negative prompt",
|
| 206 |
max_lines=1,
|
| 207 |
-
placeholder="
|
| 208 |
visible=False,
|
| 209 |
)
|
| 210 |
-
|
| 211 |
seed = gr.Slider(
|
| 212 |
label="Seed",
|
| 213 |
minimum=0,
|
|
@@ -215,44 +250,39 @@ with gr.Blocks(css=css) as demo:
|
|
| 215 |
step=1,
|
| 216 |
value=0,
|
| 217 |
)
|
| 218 |
-
|
| 219 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 220 |
-
|
| 221 |
with gr.Row():
|
| 222 |
width = gr.Slider(
|
| 223 |
label="Width",
|
| 224 |
minimum=256,
|
| 225 |
maximum=MAX_IMAGE_SIZE,
|
| 226 |
step=32,
|
| 227 |
-
value=
|
| 228 |
)
|
| 229 |
-
|
| 230 |
height = gr.Slider(
|
| 231 |
label="Height",
|
| 232 |
minimum=256,
|
| 233 |
maximum=MAX_IMAGE_SIZE,
|
| 234 |
step=32,
|
| 235 |
-
value=
|
| 236 |
)
|
| 237 |
-
|
| 238 |
with gr.Row():
|
| 239 |
guidance_scale = gr.Slider(
|
| 240 |
label="Guidance scale",
|
| 241 |
minimum=0.0,
|
| 242 |
-
maximum=
|
| 243 |
step=0.1,
|
| 244 |
-
value=
|
| 245 |
)
|
| 246 |
-
|
| 247 |
num_inference_steps = gr.Slider(
|
| 248 |
label="Number of inference steps",
|
| 249 |
minimum=1,
|
| 250 |
-
maximum=
|
| 251 |
step=1,
|
| 252 |
-
value=
|
| 253 |
)
|
| 254 |
-
|
| 255 |
gr.Examples(examples=examples, inputs=[prompt])
|
|
|
|
| 256 |
gr.on(
|
| 257 |
triggers=[run_button.click, prompt.submit],
|
| 258 |
fn=infer,
|
|
@@ -260,14 +290,16 @@ with gr.Blocks(css=css) as demo:
|
|
| 260 |
prompt,
|
| 261 |
negative_prompt,
|
| 262 |
style_selection,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
seed,
|
| 264 |
randomize_seed,
|
| 265 |
width,
|
| 266 |
height,
|
| 267 |
guidance_scale,
|
| 268 |
num_inference_steps,
|
| 269 |
-
input_image, # Add input_image to inputs
|
| 270 |
-
strength, # Add strength to inputs
|
| 271 |
],
|
| 272 |
outputs=[result, seed],
|
| 273 |
)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import random
|
| 4 |
+
import spaces
|
| 5 |
+
from diffusers import StableDiffusionXLPipeline, AutoencoderKL, ControlNetModel
|
| 6 |
+
from diffusers.utils import load_image
|
| 7 |
import torch
|
| 8 |
from typing import Tuple
|
| 9 |
+
from PIL import Image
|
| 10 |
+
from controlnet_aux import OpenposeDetector
|
| 11 |
+
import insightface
|
| 12 |
+
import onnxruntime
|
| 13 |
|
| 14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
model_repo_id = "RunDiffusion/Juggernaut-XL-v9" # Replace to the model you would like to use
|
|
|
|
| 31 |
)
|
| 32 |
pipe.to(device)
|
| 33 |
|
| 34 |
+
controlnet_openpose = ControlNetModel.from_pretrained(
|
| 35 |
+
"lllyasviel/control_v11p_sdxl_openpose", torch_dtype=torch.float16
|
| 36 |
+
).to(device)
|
| 37 |
+
|
| 38 |
+
openpose_detector = OpenposeDetector.from_pretrained("lllyasviel/ControlNet/annotator/ckpts/body_pose_model.pth").to(device)
|
| 39 |
+
|
| 40 |
+
try:
|
| 41 |
+
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-faceid_sdxl.bin")
|
| 42 |
+
except Exception as e:
|
| 43 |
+
print(f"Could not load IP-Adapter FaceID. Make sure the model exists and paths are correct: {e}")
|
| 44 |
+
print("Trying a common alternative: ip-adapter-plus-face_sdxl_vit-h.safetensors")
|
| 45 |
+
try:
|
| 46 |
+
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus-face_sdxl_vit-h.safetensors")
|
| 47 |
+
except Exception as e2:
|
| 48 |
+
print(f"Could not load second IP-Adapter variant: {e2}")
|
| 49 |
+
print("IP-Adapter will not be available. Please check your IP-Adapter setup.")
|
| 50 |
+
pipe.unload_ip_adapter()
|
| 51 |
|
| 52 |
MAX_SEED = np.iinfo(np.int32).max
|
| 53 |
MAX_IMAGE_SIZE = 4096
|
|
|
|
| 115 |
negative = ""
|
| 116 |
return p.replace("{prompt}", positive), n + negative
|
| 117 |
|
| 118 |
+
@spaces.GPU
|
| 119 |
def infer(
|
| 120 |
prompt,
|
| 121 |
negative_prompt,
|
| 122 |
style,
|
| 123 |
+
# Removed general img2img reference as we are specializing
|
| 124 |
+
input_image_pose, # New: for ControlNet OpenPose
|
| 125 |
+
pose_strength, # New: strength for ControlNet
|
| 126 |
+
input_image_face, # New: for IP-Adapter Face
|
| 127 |
+
face_fidelity, # New: fidelity/strength for IP-Adapter
|
| 128 |
seed,
|
| 129 |
randomize_seed,
|
| 130 |
width,
|
| 131 |
height,
|
| 132 |
guidance_scale,
|
| 133 |
num_inference_steps,
|
|
|
|
|
|
|
| 134 |
progress=gr.Progress(track_tqdm=True),
|
| 135 |
):
|
| 136 |
if randomize_seed:
|
|
|
|
| 138 |
prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
|
| 139 |
generator = torch.Generator().manual_seed(seed)
|
| 140 |
|
| 141 |
+
# --- NEW: Prepare ControlNet and IP-Adapter inputs ---
|
| 142 |
+
controlnet_images = []
|
| 143 |
+
controlnet_conditioning_scales = []
|
| 144 |
+
controlnet_models_to_use = []
|
| 145 |
+
ip_adapter_image_embeddings = None # Will store the face embeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
+
# Process Pose Reference
|
| 148 |
+
if input_image_pose:
|
| 149 |
+
# Preprocess the image to get the OpenPose skeleton
|
| 150 |
+
processed_pose_image = openpose_detector(input_image_pose)
|
| 151 |
+
controlnet_images.append(processed_pose_image)
|
| 152 |
+
controlnet_conditioning_scales.append(pose_strength)
|
| 153 |
+
controlnet_models_to_use.append(controlnet_openpose)
|
| 154 |
+
|
| 155 |
+
# Process Face Reference (IP-Adapter)
|
| 156 |
+
if input_image_face and pipe.has_lora_weights("ip_adapter"): # Check if IP-Adapter was loaded successfully
|
| 157 |
+
# For IP-Adapter FaceID, the pipeline itself usually handles embedding extraction
|
| 158 |
+
# You just pass the image directly.
|
| 159 |
+
# The scale is set before the call.
|
| 160 |
+
pipe.set_ip_adapter_scale(face_fidelity)
|
| 161 |
+
# ip_adapter_image_embeddings = pipe.encode_ip_adapter_image(input_image_face) # If you need to manually encode
|
| 162 |
+
# Often, you just pass the image to the main call directly if IP-Adapter is loaded.
|
| 163 |
+
|
| 164 |
+
# --- END NEW INPUT PREPARATION ---
|
| 165 |
|
| 166 |
+
# Adjusting the pipe call to use ControlNet and IP-Adapter
|
| 167 |
+
# Note: If no reference images are provided, it will fall back to text-to-image.
|
| 168 |
+
image = pipe(
|
| 169 |
+
prompt=prompt,
|
| 170 |
+
negative_prompt=negative_prompt,
|
| 171 |
+
image=controlnet_images if controlnet_images else None, # Pass processed pose image(s) if available
|
| 172 |
+
controlnet_conditioning_scale=controlnet_conditioning_scales if controlnet_conditioning_scales else None,
|
| 173 |
+
controlnet=controlnet_models_to_use if controlnet_models_to_use else None,
|
| 174 |
+
ip_adapter_image=input_image_face if input_image_face else None, # Pass the raw face image for IP-Adapter
|
| 175 |
+
# ip_adapter_image_embeds=ip_adapter_image_embeddings, # Use this if you pre-encode
|
| 176 |
+
guidance_scale=guidance_scale,
|
| 177 |
+
num_inference_steps=num_inference_steps,
|
| 178 |
+
width=width,
|
| 179 |
+
height=height,
|
| 180 |
+
generator=generator,
|
| 181 |
+
).images[0]
|
| 182 |
+
|
| 183 |
+
return image, seed
|
| 184 |
|
| 185 |
examples = [
|
| 186 |
+
"A stunning woman standing on a beach at sunset, dramatic lighting, highly detailed",
|
| 187 |
+
"A man in a futuristic city, cyberpunk style, neon lights",
|
| 188 |
+
"An AI model posing with a friendly robot in a studio, professional photoshoot",
|
| 189 |
]
|
| 190 |
+
css = """#col-container {
|
|
|
|
|
|
|
| 191 |
margin: 0 auto;
|
| 192 |
max-width: 640px;
|
| 193 |
+
}"""
|
|
|
|
| 194 |
|
| 195 |
with gr.Blocks(css=css) as demo:
|
| 196 |
with gr.Column(elem_id="col-container"):
|
| 197 |
+
gr.Markdown(" # AI Instagram Model Creator")
|
| 198 |
with gr.Row():
|
| 199 |
prompt = gr.Text(
|
| 200 |
label="Prompt",
|
| 201 |
show_label=False,
|
| 202 |
max_lines=1,
|
| 203 |
+
placeholder="Describe your AI model and scene (e.g., 'A confident woman in a red dress, city background')",
|
| 204 |
container=False,
|
| 205 |
)
|
| 206 |
+
run_button = gr.Button("Generate", scale=0, variant="primary")
|
| 207 |
result = gr.Image(label="Result", show_label=False)
|
| 208 |
|
| 209 |
+
with gr.Accordion("Reference Images", open=True):
|
| 210 |
+
gr.Markdown("Upload images to control pose and face consistency.")
|
| 211 |
+
input_image_pose = gr.Image(label="Human Pose Reference (for body posture)", type="pil", show_label=True)
|
| 212 |
+
pose_strength = gr.Slider(
|
| 213 |
+
label="Pose Control Strength (0.0 = ignore, 1.0 = strict adherence)",
|
| 214 |
+
minimum=0.0,
|
| 215 |
+
maximum=1.0,
|
| 216 |
+
step=0.01,
|
| 217 |
+
value=0.8, # Good starting point for strong pose control
|
| 218 |
+
)
|
| 219 |
+
gr.Markdown("---") # Separator
|
| 220 |
+
|
| 221 |
+
input_image_face = gr.Image(label="Face Reference (for facial consistency)", type="pil", show_label=True)
|
| 222 |
+
face_fidelity = gr.Slider(
|
| 223 |
+
label="Face Fidelity (0.0 = ignore, 1.0 = highly similar)",
|
| 224 |
+
minimum=0.0,
|
| 225 |
+
maximum=1.0,
|
| 226 |
+
step=0.01,
|
| 227 |
+
value=0.7, # Good starting point for face transfer
|
| 228 |
+
)
|
| 229 |
|
| 230 |
with gr.Row(visible=True):
|
| 231 |
style_selection = gr.Radio(
|
|
|
|
| 236 |
value=DEFAULT_STYLE_NAME,
|
| 237 |
label="Image Style",
|
| 238 |
)
|
|
|
|
| 239 |
with gr.Accordion("Advanced Settings", open=False):
|
| 240 |
negative_prompt = gr.Text(
|
| 241 |
label="Negative prompt",
|
| 242 |
max_lines=1,
|
| 243 |
+
placeholder="What you DON'T want in the image (e.g., 'deformed, blurry, text')",
|
| 244 |
visible=False,
|
| 245 |
)
|
|
|
|
| 246 |
seed = gr.Slider(
|
| 247 |
label="Seed",
|
| 248 |
minimum=0,
|
|
|
|
| 250 |
step=1,
|
| 251 |
value=0,
|
| 252 |
)
|
|
|
|
| 253 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
|
|
| 254 |
with gr.Row():
|
| 255 |
width = gr.Slider(
|
| 256 |
label="Width",
|
| 257 |
minimum=256,
|
| 258 |
maximum=MAX_IMAGE_SIZE,
|
| 259 |
step=32,
|
| 260 |
+
value=1024,
|
| 261 |
)
|
|
|
|
| 262 |
height = gr.Slider(
|
| 263 |
label="Height",
|
| 264 |
minimum=256,
|
| 265 |
maximum=MAX_IMAGE_SIZE,
|
| 266 |
step=32,
|
| 267 |
+
value=1024,
|
| 268 |
)
|
|
|
|
| 269 |
with gr.Row():
|
| 270 |
guidance_scale = gr.Slider(
|
| 271 |
label="Guidance scale",
|
| 272 |
minimum=0.0,
|
| 273 |
+
maximum=20.0, # Increased max for more control
|
| 274 |
step=0.1,
|
| 275 |
+
value=7.0,
|
| 276 |
)
|
|
|
|
| 277 |
num_inference_steps = gr.Slider(
|
| 278 |
label="Number of inference steps",
|
| 279 |
minimum=1,
|
| 280 |
+
maximum=100, # More typical steps for SDXL (20-50 usually sufficient)
|
| 281 |
step=1,
|
| 282 |
+
value=30,
|
| 283 |
)
|
|
|
|
| 284 |
gr.Examples(examples=examples, inputs=[prompt])
|
| 285 |
+
|
| 286 |
gr.on(
|
| 287 |
triggers=[run_button.click, prompt.submit],
|
| 288 |
fn=infer,
|
|
|
|
| 290 |
prompt,
|
| 291 |
negative_prompt,
|
| 292 |
style_selection,
|
| 293 |
+
input_image_pose,
|
| 294 |
+
pose_strength,
|
| 295 |
+
input_image_face,
|
| 296 |
+
face_fidelity,
|
| 297 |
seed,
|
| 298 |
randomize_seed,
|
| 299 |
width,
|
| 300 |
height,
|
| 301 |
guidance_scale,
|
| 302 |
num_inference_steps,
|
|
|
|
|
|
|
| 303 |
],
|
| 304 |
outputs=[result, seed],
|
| 305 |
)
|