Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,70 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from huggingface_hub import InferenceClient
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
def respond(
|
| 6 |
-
message,
|
| 7 |
-
history: list[dict[str, str]],
|
| 8 |
-
system_message,
|
| 9 |
-
max_tokens,
|
| 10 |
-
temperature,
|
| 11 |
-
top_p,
|
| 12 |
-
hf_token: gr.OAuthToken,
|
| 13 |
-
):
|
| 14 |
-
"""
|
| 15 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 16 |
-
"""
|
| 17 |
-
client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
|
| 18 |
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
response = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
|
| 28 |
-
messages,
|
| 29 |
-
max_tokens=max_tokens,
|
| 30 |
-
stream=True,
|
| 31 |
-
temperature=temperature,
|
| 32 |
-
top_p=top_p,
|
| 33 |
-
):
|
| 34 |
-
choices = message.choices
|
| 35 |
-
token = ""
|
| 36 |
-
if len(choices) and choices[0].delta.content:
|
| 37 |
-
token = choices[0].delta.content
|
| 38 |
-
|
| 39 |
-
response += token
|
| 40 |
-
yield response
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
"""
|
| 44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 45 |
-
"""
|
| 46 |
chatbot = gr.ChatInterface(
|
| 47 |
respond,
|
| 48 |
type="messages",
|
| 49 |
additional_inputs=[
|
| 50 |
-
gr.Textbox(value="You are a
|
| 51 |
-
gr.Slider(
|
| 52 |
-
gr.Slider(
|
| 53 |
-
gr.Slider(
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
value=0.95,
|
| 57 |
-
step=0.05,
|
| 58 |
-
label="Top-p (nucleus sampling)",
|
| 59 |
-
),
|
| 60 |
],
|
| 61 |
)
|
| 62 |
|
| 63 |
-
with gr.Blocks() as demo:
|
|
|
|
| 64 |
with gr.Sidebar():
|
| 65 |
gr.LoginButton()
|
|
|
|
|
|
|
|
|
|
| 66 |
chatbot.render()
|
| 67 |
|
| 68 |
-
|
| 69 |
if __name__ == "__main__":
|
| 70 |
demo.launch()
|
|
|
|
| 1 |
+
# app.py — full version with memory + web search + datasets
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import json
|
| 5 |
+
import threading
|
| 6 |
import gradio as gr
|
| 7 |
+
from huggingface_hub import InferenceClient, snapshot_download
|
| 8 |
+
from datasets import load_dataset
|
| 9 |
+
from duckduckgo_search import DDGS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
client = InferenceClient(
|
| 12 |
+
provider="cerebras",
|
| 13 |
+
api_key=os.environ["csk-933e3whtcvhjtfchfmmk4ncdtc86jp26v4vkn9rd5yk6ny5c"],
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
# ---------------- CONFIG ----------------
|
| 17 |
+
MODEL_ID = "openai/gpt-oss-120b" # or granite
|
| 18 |
+
DATA_DIR = "/data" if os.path.isdir("/data") else "./data"
|
| 19 |
+
os.makedirs(DATA_DIR, exist_ok=True)
|
| 20 |
+
|
| 21 |
+
SHORT_TERM_LIMIT = 10
|
| 22 |
+
SUMMARY_MAX_TOKENS = 150
|
| 23 |
+
MEMORY_LOCK = threading.Lock()
|
| 24 |
+
|
| 25 |
+
# ---------------- dataset loading ----------------
|
| 26 |
+
# ⚠️ Heavy startup, comment out if running on free HF Space
|
| 27 |
+
folder = snapshot_download(
|
| 28 |
+
"HuggingFaceFW/fineweb",
|
| 29 |
+
repo_type="dataset",
|
| 30 |
+
local_dir="./fineweb/",
|
| 31 |
+
allow_patterns="sample/10BT/*",
|
| 32 |
+
)
|
| 33 |
+
ds1 = load_dataset("HuggingFaceH4/ultrachat_200k")
|
| 34 |
+
ds2 = load_dataset("Anthropic/hh-rlhf")
|
| 35 |
+
|
| 36 |
+
# ---------------- helpers: memory ----------------
|
| 37 |
+
def get_user_id(hf_token: gr.OAuthToken | None):
|
| 38 |
+
if hf_token and getattr(hf_token, "token", None):
|
| 39 |
+
return "user_" + hf_token.token[:12]
|
| 40 |
+
return "anon"
|
| 41 |
+
|
| 42 |
+
def memory_file_path(user_id: str):
|
| 43 |
+
return os.path.join(DATA_DIR, f"memory_{user_id}.json")
|
| 44 |
+
|
| 45 |
+
def load_memory(user_id: str):
|
| 46 |
+
p = memory_file_path(user_id)
|
| 47 |
+
if os.path.exists(p):
|
| 48 |
+
try:
|
| 49 |
+
with open(p, "r", encoding="utf-8") as f:
|
| 50 |
+
mem = json.load(f)
|
| 51 |
+
if isinstance(mem, dict) and "short_term" in mem and "long_term" in mem:
|
| 52 |
+
return mem
|
| 53 |
+
except Exception as e:
|
| 54 |
+
print("load_memory error:", e)
|
| 55 |
+
return {"short_term": [], "long_term": ""}
|
| 56 |
+
|
| 57 |
+
def save_memory(user_id: str, memory: dict):
|
| 58 |
+
p = memory_file_path(user_id)
|
| 59 |
+
try:
|
| 60 |
+
with MEMORY_LOCK:
|
| 61 |
+
with open(p, "w", encoding="utf-8") as f:
|
| 62 |
+
json.dump(memory, f, ensure_ascii=False, indent=2)
|
| 63 |
+
except Exception as e:
|
| 64 |
+
print("save_memory error:", e)
|
| 65 |
+
|
| 66 |
+
# ---------------- normalize history ----------------
|
| 67 |
+
def normalize_history(history):
|
| 68 |
+
out = []
|
| 69 |
+
if not history: return out
|
| 70 |
+
for turn in history:
|
| 71 |
+
if isinstance(turn, dict) and "role" in turn and "content" in turn:
|
| 72 |
+
out.append({"role": turn["role"], "content": str(turn["content"])})
|
| 73 |
+
elif isinstance(turn, (list, tuple)) and len(turn) == 2:
|
| 74 |
+
user_msg, assistant_msg = turn
|
| 75 |
+
out.append({"role": "user", "content": str(user_msg)})
|
| 76 |
+
out.append({"role": "assistant", "content": str(assistant_msg)})
|
| 77 |
+
elif isinstance(turn, str):
|
| 78 |
+
out.append({"role": "user", "content": turn})
|
| 79 |
+
return out
|
| 80 |
+
|
| 81 |
+
# ---------------- sync completion ----------------
|
| 82 |
+
def _get_chat_response_sync(client: InferenceClient, messages, max_tokens=SUMMARY_MAX_TOKENS, temperature=0.3, top_p=0.9):
|
| 83 |
+
try:
|
| 84 |
+
resp = client.chat_completion(messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=False)
|
| 85 |
+
except Exception as e:
|
| 86 |
+
print("sync chat_completion error:", e)
|
| 87 |
+
return ""
|
| 88 |
|
| 89 |
+
try:
|
| 90 |
+
choices = resp.get("choices") if isinstance(resp, dict) else getattr(resp, "choices", None)
|
| 91 |
+
if choices:
|
| 92 |
+
c0 = choices[0]
|
| 93 |
+
msg = c0.get("message") if isinstance(c0, dict) else getattr(c0, "message", None)
|
| 94 |
+
if isinstance(msg, dict):
|
| 95 |
+
return msg.get("content", "")
|
| 96 |
+
return getattr(msg, "content", "") or str(msg or "")
|
| 97 |
+
except Exception:
|
| 98 |
+
pass
|
| 99 |
+
return ""
|
| 100 |
|
| 101 |
+
# ---------------- web search ----------------
|
| 102 |
+
def web_search(query, num_results=3):
|
| 103 |
+
try:
|
| 104 |
+
with DDGS() as ddgs:
|
| 105 |
+
results = list(ddgs.text(query, max_results=num_results))
|
| 106 |
+
search_context = "🔍 Web Search Results:\n\n"
|
| 107 |
+
for i, r in enumerate(results, 1):
|
| 108 |
+
title = r.get("title", "")[:200]
|
| 109 |
+
body = r.get("body", "")[:200].replace("\n", " ")
|
| 110 |
+
href = r.get("href", "")
|
| 111 |
+
search_context += f"{i}. {title}\n{body}...\nSource: {href}\n\n"
|
| 112 |
+
return search_context
|
| 113 |
+
except Exception as e:
|
| 114 |
+
return f"❌ Search error: {str(e)}"
|
| 115 |
+
|
| 116 |
+
# ---------------- summarization ----------------
|
| 117 |
+
def summarize_old_messages(client: InferenceClient, old_messages):
|
| 118 |
+
text = "\n".join([f"{m['role']}: {m['content']}" for m in old_messages])
|
| 119 |
+
system = {"role": "system", "content": "You are a summarizer. Summarize <=150 words."}
|
| 120 |
+
user = {"role": "user", "content": text}
|
| 121 |
+
return _get_chat_response_sync(client, [system, user])
|
| 122 |
+
|
| 123 |
+
# ---------------- memory tools ----------------
|
| 124 |
+
def show_memory(hf_token: gr.OAuthToken | None = None):
|
| 125 |
+
user = get_user_id(hf_token)
|
| 126 |
+
p = memory_file_path(user)
|
| 127 |
+
if not os.path.exists(p):
|
| 128 |
+
return "ℹ️ No memory file found for user: " + user
|
| 129 |
+
with open(p, "r", encoding="utf-8") as f:
|
| 130 |
+
return f.read()
|
| 131 |
+
|
| 132 |
+
def clear_memory(hf_token: gr.OAuthToken | None = None):
|
| 133 |
+
user = get_user_id(hf_token)
|
| 134 |
+
p = memory_file_path(user)
|
| 135 |
+
if os.path.exists(p):
|
| 136 |
+
os.remove(p)
|
| 137 |
+
return f"✅ Memory cleared for {user}"
|
| 138 |
+
return "ℹ️ No memory to clear."
|
| 139 |
+
|
| 140 |
+
# ---------------- main chat ----------------
|
| 141 |
+
def respond(message, history: list, system_message, max_tokens, temperature, top_p,
|
| 142 |
+
enable_search, enable_persistent_memory, hf_token: gr.OAuthToken = None):
|
| 143 |
+
|
| 144 |
+
client = InferenceClient(token=(hf_token.token if hf_token else None), model=MODEL_ID)
|
| 145 |
+
user_id = get_user_id(hf_token)
|
| 146 |
+
memory = load_memory(user_id) if enable_persistent_memory else {"short_term": [], "long_term": ""}
|
| 147 |
+
|
| 148 |
+
session_history = normalize_history(history)
|
| 149 |
+
combined = memory.get("short_term", []) + session_history
|
| 150 |
+
|
| 151 |
+
if len(combined) > SHORT_TERM_LIMIT:
|
| 152 |
+
to_summarize = combined[:len(combined) - SHORT_TERM_LIMIT]
|
| 153 |
+
summary = summarize_old_messages(client, to_summarize)
|
| 154 |
+
if summary:
|
| 155 |
+
memory["long_term"] = (memory.get("long_term", "") + "\n" + summary).strip()
|
| 156 |
+
combined = combined[-SHORT_TERM_LIMIT:]
|
| 157 |
+
|
| 158 |
+
combined.append({"role": "user", "content": message})
|
| 159 |
+
memory["short_term"] = combined
|
| 160 |
+
if enable_persistent_memory:
|
| 161 |
+
save_memory(user_id, memory)
|
| 162 |
+
|
| 163 |
+
messages = [{"role": "system", "content": system_message}]
|
| 164 |
+
if memory.get("long_term"):
|
| 165 |
+
messages.append({"role": "system", "content": "Long-term memory:\n" + memory["long_term"]})
|
| 166 |
+
messages.extend(memory["short_term"])
|
| 167 |
+
|
| 168 |
+
if enable_search and any(k in message.lower() for k in ["search", "google", "tin tức", "news", "what is"]):
|
| 169 |
+
sr = web_search(message)
|
| 170 |
+
messages.append({"role": "user", "content": f"{sr}\n\nBased on search results, answer: {message}"})
|
| 171 |
|
| 172 |
response = ""
|
| 173 |
+
try:
|
| 174 |
+
for chunk in client.chat_completion(messages, max_tokens=int(max_tokens),
|
| 175 |
+
stream=True, temperature=float(temperature), top_p=float(top_p)):
|
| 176 |
+
choices = chunk.get("choices") if isinstance(chunk, dict) else getattr(chunk, "choices", None)
|
| 177 |
+
if not choices: continue
|
| 178 |
+
c0 = choices[0]
|
| 179 |
+
delta = c0.get("delta") if isinstance(c0, dict) else getattr(c0, "delta", None)
|
| 180 |
+
token = None
|
| 181 |
+
if delta and (delta.get("content") if isinstance(delta, dict) else getattr(delta, "content", None)):
|
| 182 |
+
token = delta.get("content") if isinstance(delta, dict) else getattr(delta, "content", None)
|
| 183 |
+
else:
|
| 184 |
+
msg = c0.get("message") if isinstance(c0, dict) else getattr(c0, "message", None)
|
| 185 |
+
if isinstance(msg, dict):
|
| 186 |
+
token = msg.get("content", "")
|
| 187 |
+
else:
|
| 188 |
+
token = getattr(msg, "content", None) or str(msg or "")
|
| 189 |
+
if token:
|
| 190 |
+
response += token
|
| 191 |
+
yield response
|
| 192 |
+
except Exception as e:
|
| 193 |
+
yield f"⚠️ Inference error: {e}"
|
| 194 |
+
return
|
| 195 |
+
|
| 196 |
+
memory["short_term"].append({"role": "assistant", "content": response})
|
| 197 |
+
memory["short_term"] = memory["short_term"][-SHORT_TERM_LIMIT:]
|
| 198 |
+
if enable_persistent_memory:
|
| 199 |
+
save_memory(user_id, memory)
|
| 200 |
|
| 201 |
+
# ---------------- Gradio UI ----------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
chatbot = gr.ChatInterface(
|
| 203 |
respond,
|
| 204 |
type="messages",
|
| 205 |
additional_inputs=[
|
| 206 |
+
gr.Textbox(value="You are a helpful AI assistant.", label="System message"),
|
| 207 |
+
gr.Slider(1, 2048, value=512, step=1, label="Max new tokens"),
|
| 208 |
+
gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature"),
|
| 209 |
+
gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p"),
|
| 210 |
+
gr.Checkbox(value=True, label="Enable Web Search 🔍"),
|
| 211 |
+
gr.Checkbox(value=True, label="Enable Persistent Memory"),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
],
|
| 213 |
)
|
| 214 |
|
| 215 |
+
with gr.Blocks(title="AI Chatbot (full version)") as demo:
|
| 216 |
+
gr.Markdown("# 🤖 AI Chatbot with Memory + Web Search + Datasets")
|
| 217 |
with gr.Sidebar():
|
| 218 |
gr.LoginButton()
|
| 219 |
+
gr.Markdown("### Memory Tools")
|
| 220 |
+
gr.Button("👀 Show Memory").click(show_memory, inputs=None, outputs=gr.Textbox(label="Memory"))
|
| 221 |
+
gr.Button("🗑️ Clear Memory").click(clear_memory, inputs=None, outputs=gr.Textbox(label="Status"))
|
| 222 |
chatbot.render()
|
| 223 |
|
|
|
|
| 224 |
if __name__ == "__main__":
|
| 225 |
demo.launch()
|