Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| # Load model and tokenizer | |
| model_name = "DAMO-NLP-SG/VideoLLaMA3-7B" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
| model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) | |
| model.eval() | |
| def generate_response(prompt, max_tokens=200, temperature=0.7): | |
| inputs = tokenizer(prompt, return_tensors="pt") | |
| with torch.no_grad(): | |
| output = model.generate( | |
| **inputs, | |
| max_new_tokens=max_tokens, | |
| temperature=temperature, | |
| do_sample=True, | |
| top_p=0.9, | |
| eos_token_id=tokenizer.eos_token_id | |
| ) | |
| response = tokenizer.decode(output[0], skip_special_tokens=True) | |
| return response[len(prompt):].strip() # Return only the generated part | |
| # Gradio UI | |
| iface = gr.Interface( | |
| fn=generate_response, | |
| inputs=[ | |
| gr.Textbox(label="Prompt", lines=5, placeholder="Enter your prompt here..."), | |
| gr.Slider(minimum=50, maximum=1000, value=200, label="Max Tokens"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature"), | |
| ], | |
| outputs=gr.Textbox(label="Response"), | |
| title="VideoLLaMA3-7B Text Generation", | |
| description="Generate text using DAMO-NLP-SG/VideoLLaMA3-7B" | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch() | |