|
|
from fastapi import FastAPI, HTTPException |
|
|
from pydantic import BaseModel |
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
from huggingface_hub import login |
|
|
import os |
|
|
import torch |
|
|
import uvicorn |
|
|
|
|
|
login(os.getenv("HF_TOKEN")) |
|
|
|
|
|
app = FastAPI( |
|
|
title="VexaAI Model-Platform: Google Gemma-2B", |
|
|
description="Self-hosted AI-Model Google Gemma-2B, powered by VexaAI.", |
|
|
version="0.9" |
|
|
) |
|
|
|
|
|
model_name = "google/gemma-2b" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
model_name, |
|
|
device_map="auto", |
|
|
trust_remote_code=True, |
|
|
torch_dtype=torch.float32 |
|
|
) |
|
|
model.eval() |
|
|
|
|
|
class GenerateRequest(BaseModel): |
|
|
prompt: str |
|
|
max_new_tokens: int = 512 |
|
|
temperature: float = 0.7 |
|
|
|
|
|
@app.post("/generate") |
|
|
async def generate_text(request: GenerateRequest): |
|
|
try: |
|
|
inputs = tokenizer(request.prompt, return_tensors="pt").to(model.device) |
|
|
|
|
|
with torch.no_grad(): |
|
|
outputs = model.generate( |
|
|
**inputs, |
|
|
max_new_tokens=request.max_new_tokens, |
|
|
temperature=request.temperature, |
|
|
do_sample=True, |
|
|
repetition_penalty=1.1, |
|
|
pad_token_id=tokenizer.eos_token_id |
|
|
) |
|
|
|
|
|
full_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
generated_text = full_text[len(tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True)):].strip() |
|
|
|
|
|
return {"generated_text": generated_text} |
|
|
except Exception as e: |
|
|
raise HTTPException(status_code=500, detail=f"VexaAI Model-Platform: HTTP/S error: {str(e)}") |
|
|
|
|
|
@app.get("/") |
|
|
async def root(): |
|
|
return {"message": "To start generating text, use /generate."} |
|
|
|
|
|
if __name__ == "__main__": |
|
|
uvicorn.run(app, host="0.0.0.0", port=7860) |