KTHID2223Lab2 / app.py
Zephyroam's picture
Update model handling in respond function to use model2port mapping for InferenceClient
5c4242f
import os
import gradio as gr
from huggingface_hub import InferenceClient
VLLM_BASE_URL = os.getenv("VLLM_BASE_URL")
VLLM_API_KEY = os.getenv("VLLM_API_KEY")
if not VLLM_BASE_URL:
raise ValueError("Missing env var: VLLM_BASE_URL")
if not VLLM_API_KEY:
raise ValueError("Missing env var: VLLM_API_KEY")
model2port = {
"llama-3.2-1b-instruct-unsloth-bnb-16bit-FineTome-r32": 8000,
"llama-3.2-3b-instruct-unsloth-bnb-16bit-FineTome-r32": 8001,
"qwen-2.5-3b-instruct-unsloth-bnb-16bit-FineTome-r32": 8002,
}
def respond(
message,
history: list[dict[str, str]],
system_message,
model_name,
max_tokens,
temperature,
top_p,
hf_token: gr.OAuthToken,
):
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient(token=VLLM_API_KEY, model=f"{VLLM_BASE_URL}:{model2port[model_name]}")
model_name = f"Zephyroam/{model_name}"
messages = [{"role": "system", "content": system_message}]
messages.extend(history)
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
model=model_name,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
choices = message.choices
token = ""
if len(choices) and choices[0].delta.content:
token = choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
chatbot = gr.ChatInterface(
respond,
type="messages",
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Dropdown(
label="Model name",
choices=[
"llama-3.2-1b-instruct-unsloth-bnb-16bit-FineTome-r32",
"llama-3.2-3b-instruct-unsloth-bnb-16bit-FineTome-r32",
"qwen-2.5-3b-instruct-unsloth-bnb-16bit-FineTome-r32",
],
value="llama-3.2-3b-instruct-unsloth-bnb-16bit-FineTome-r32",
allow_custom_value=False,
),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
with gr.Blocks() as demo:
with gr.Sidebar():
gr.LoginButton()
chatbot.render()
if __name__ == "__main__":
demo.launch()