Spaces:
Sleeping
Sleeping
| import os | |
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| VLLM_BASE_URL = os.getenv("VLLM_BASE_URL") | |
| VLLM_API_KEY = os.getenv("VLLM_API_KEY") | |
| if not VLLM_BASE_URL: | |
| raise ValueError("Missing env var: VLLM_BASE_URL") | |
| if not VLLM_API_KEY: | |
| raise ValueError("Missing env var: VLLM_API_KEY") | |
| model2port = { | |
| "llama-3.2-1b-instruct-unsloth-bnb-16bit-FineTome-r32": 8000, | |
| "llama-3.2-3b-instruct-unsloth-bnb-16bit-FineTome-r32": 8001, | |
| "qwen-2.5-3b-instruct-unsloth-bnb-16bit-FineTome-r32": 8002, | |
| } | |
| def respond( | |
| message, | |
| history: list[dict[str, str]], | |
| system_message, | |
| model_name, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| hf_token: gr.OAuthToken, | |
| ): | |
| """ | |
| For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
| """ | |
| client = InferenceClient(token=VLLM_API_KEY, model=f"{VLLM_BASE_URL}:{model2port[model_name]}") | |
| model_name = f"Zephyroam/{model_name}" | |
| messages = [{"role": "system", "content": system_message}] | |
| messages.extend(history) | |
| messages.append({"role": "user", "content": message}) | |
| response = "" | |
| for message in client.chat_completion( | |
| messages, | |
| model=model_name, | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ): | |
| choices = message.choices | |
| token = "" | |
| if len(choices) and choices[0].delta.content: | |
| token = choices[0].delta.content | |
| response += token | |
| yield response | |
| """ | |
| For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
| """ | |
| chatbot = gr.ChatInterface( | |
| respond, | |
| type="messages", | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| gr.Dropdown( | |
| label="Model name", | |
| choices=[ | |
| "llama-3.2-1b-instruct-unsloth-bnb-16bit-FineTome-r32", | |
| "llama-3.2-3b-instruct-unsloth-bnb-16bit-FineTome-r32", | |
| "qwen-2.5-3b-instruct-unsloth-bnb-16bit-FineTome-r32", | |
| ], | |
| value="llama-3.2-3b-instruct-unsloth-bnb-16bit-FineTome-r32", | |
| allow_custom_value=False, | |
| ), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| ], | |
| ) | |
| with gr.Blocks() as demo: | |
| with gr.Sidebar(): | |
| gr.LoginButton() | |
| chatbot.render() | |
| if __name__ == "__main__": | |
| demo.launch() | |