import os import gradio as gr from huggingface_hub import InferenceClient VLLM_BASE_URL = os.getenv("VLLM_BASE_URL") VLLM_API_KEY = os.getenv("VLLM_API_KEY") if not VLLM_BASE_URL: raise ValueError("Missing env var: VLLM_BASE_URL") if not VLLM_API_KEY: raise ValueError("Missing env var: VLLM_API_KEY") model2port = { "llama-3.2-1b-instruct-unsloth-bnb-16bit-FineTome-r32": 8000, "llama-3.2-3b-instruct-unsloth-bnb-16bit-FineTome-r32": 8001, "qwen-2.5-3b-instruct-unsloth-bnb-16bit-FineTome-r32": 8002, } def respond( message, history: list[dict[str, str]], system_message, model_name, max_tokens, temperature, top_p, hf_token: gr.OAuthToken, ): """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient(token=VLLM_API_KEY, model=f"{VLLM_BASE_URL}:{model2port[model_name]}") model_name = f"Zephyroam/{model_name}" messages = [{"role": "system", "content": system_message}] messages.extend(history) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, model=model_name, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): choices = message.choices token = "" if len(choices) and choices[0].delta.content: token = choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ chatbot = gr.ChatInterface( respond, type="messages", additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Dropdown( label="Model name", choices=[ "llama-3.2-1b-instruct-unsloth-bnb-16bit-FineTome-r32", "llama-3.2-3b-instruct-unsloth-bnb-16bit-FineTome-r32", "qwen-2.5-3b-instruct-unsloth-bnb-16bit-FineTome-r32", ], value="llama-3.2-3b-instruct-unsloth-bnb-16bit-FineTome-r32", allow_custom_value=False, ), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) with gr.Blocks() as demo: with gr.Sidebar(): gr.LoginButton() chatbot.render() if __name__ == "__main__": demo.launch()