File size: 7,328 Bytes
1273f5f
eae0874
3bf8430
 
 
1273f5f
 
3bf8430
 
 
 
1273f5f
 
eae0874
3bf8430
eae0874
3bf8430
 
 
eae0874
3bf8430
 
 
 
 
 
 
56405c9
3bf8430
 
 
eae0874
 
 
 
 
 
 
 
5a4bb32
eae0874
 
 
 
 
 
c379861
 
 
 
 
3bf8430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eae0874
 
 
 
 
 
c379861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eae0874
3bf8430
 
eae0874
 
 
 
 
 
 
3bf8430
 
eae0874
59b6e0f
 
 
eae0874
59b6e0f
3bf8430
 
 
 
 
eae0874
3bf8430
 
 
 
 
 
 
 
 
eae0874
3bf8430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eae0874
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
---
title: RlveGym Environment Server
emoji: 📡
colorFrom: purple
colorTo: blue
sdk: docker
pinned: false
app_port: 8000
base_path: /web
tags:
  - openenv
---

# RlveGym Environment

This package contains a collection of 400 verifiable environments from RLVE-Gym, introduced by the paper [*RLVE: Scaling Up Reinforcement Learning for Language Models with Adaptive Verifiable Environments*](https://arxiv.org/abs/2511.07317) (original GitHub repository is [here](https://github.com/Zhiyuan-Zeng/RLVE)).

## Quick Start

The simplest way to use RlveGym environment is through the `RlveGymEnv` class:

```python
from RLVE_Gym import RlveGymAction, RlveGymEnv

try:
    # Create environment from Docker image
    RLVE_Gymenv = RlveGymEnv.from_docker_image("RLVE_Gym-env:latest")
    # If you prefer not to build the Docker image locally, you can try: RLVE_Gymenv = RlveGymEnv.from_docker_image("registry.hf.space/zhiyuanzeng-rlve-gym:latest")

    # Reset
    result = RLVE_Gymenv.reset()
    print(f"Problem Prompt: {result.observation.problem_input}")
    # Or:
    print(f"Problem Prompt (from the environment's state): {RLVE_Gymenv.state().problem_input}")

    # Send multiple outputs
    outputs = [
        "Wrong Format",
        r"<answer>0</answer>", # Wrong Answer
        r"<answer>4753</answer>", # Please replace "4753" with the correct answer
    ]

    for output in outputs:
        result = RLVE_Gymenv.step(RlveGymAction(output = output))
        print(f"Sent: '{output}'")
        print(f"Result: `{result}`")
        print(f"`verifier_result`: `{result.observation.verifier_result}`")
        print(f"`reward`: `{result.reward}`")
        print("`accuracy`: `{}`".format(result.observation.verifier_result["accuracy"]))
        print("(so far) sum_accuracy/num_samples = {}/{}".format(RLVE_Gymenv.state().sum_accuracy, RLVE_Gymenv.state().num_samples))
        print("\n")

finally:
    # Always clean up
    RLVE_Gymenv.close()
```

That's it! The `RlveGymEnv.from_docker_image()` method handles:
- Starting the Docker container
- Waiting for the server to be ready
- Connecting to the environment
- Container cleanup when you call `close()`

## Building the Docker Image

Before using the environment, you need to build the Docker image:

```bash
# From project root
docker build -t RLVE_Gym-env:latest -f server/Dockerfile .
```

## Deploying to Hugging Face Spaces

You can easily deploy your OpenEnv environment to Hugging Face Spaces using the `openenv push` command:

```bash
# From the environment directory (where openenv.yaml is located)
openenv push

# Or specify options
openenv push --namespace my-org --private
```

The `openenv push` command will:
1. Validate that the directory is an OpenEnv environment (checks for `openenv.yaml`)
2. Prepare a custom build for Hugging Face Docker space (enables web interface)
3. Upload to Hugging Face (ensuring you're logged in)

### Prerequisites

- Authenticate with Hugging Face: The command will prompt for login if not already authenticated

### Options

- `--directory`, `-d`: Directory containing the OpenEnv environment (defaults to current directory)
- `--repo-id`, `-r`: Repository ID in format 'username/repo-name' (defaults to 'username/env-name' from openenv.yaml)
- `--base-image`, `-b`: Base Docker image to use (overrides Dockerfile FROM)
- `--private`: Deploy the space as private (default: public)

### Examples

```bash
# Push to your personal namespace (defaults to username/env-name from openenv.yaml)
openenv push

# Push to a specific repository
openenv push --repo-id my-org/my-env

# Push with a custom base image
openenv push --base-image ghcr.io/meta-pytorch/openenv-base:latest

# Push as a private space
openenv push --private

# Combine options
openenv push --repo-id my-org/my-env --base-image custom-base:latest --private
```

After deployment, your space will be available at:
`https://huggingface.co/spaces/<repo-id>`

The deployed space includes:
- **Web Interface** at `/web` - Interactive UI for exploring the environment
- **API Documentation** at `/docs` - Full OpenAPI/Swagger interface
- **Health Check** at `/health` - Container health monitoring

## Environment Details

### Environment Initialization

Please check [here](server/RLVE_Gym_environment.py) for detailed usage:
- `environment_identifier` (str) - The environment's identifier. Check [here](server/Gym/environments/__init__.py) for detailed usage.
- `difficulty` (int) - The difficulty of generated problems.
- `answer_markers` (Tuple[str] of length 2) - How the environment extracts the final answer from a model output.
- `initial_seed` (int) - The initial seed to use when generating the first problem. Whenever `reset()` is called, the seed will be incremented by 1.

Right now, you can set these arguments by passing them through environment variables:

```python
RLVE_Gymenv = RlveGymEnv.from_docker_image(
    "RLVE_Gym-env:latest",
    env_vars = {
        "RLVEGYM_ENVIRONMENT_IDENTIFIER": "Sorting",
        "RLVEGYM_DIFFICULTY": "2",
        "RLVEGYM_ANSWER_MARKER_START": r"\boxed{",
        "RLVEGYM_ANSWER_MARKER_END": r"}",
        "RLVEGYM_INITIAL_SEED": "10",
    },
)
```

### Action
**RlveGymAction**: Contains a single field
- `output` (str) - The model's output to get verified.

### State
**RlveGymState**:
- `seed` (int) - The seed to use when running `reset()`.
- `problem_input` (Optional[str]) - The input of the problem; if it is `None`, it means that the problem generation has not been run, or it failed.
- `num_samples` (int) and `sum_accuracy` (int) - The statistics of the result of `step(action)` so far for the current problem (the number of outputs sent to the verifier and the number of correct ones).

### Observation
**RlveGymObservation**:
- `problem_input` (Optional[str]) - The input of the problem; if it is `None`, it means that the problem generation has not been run or has failed.
- `verifier_result` (Optional[dict]) - Contains `reward` as the raw reward, `accuracy` as the 0/1 correctness, and `format_score` as the 0/1 format correctness; if it is `None`, it means that the verification has failed.
- `success` (bool) - `True` or `False` indicates whether the operation succeeded.
- `message` (str) - The explanation of `success`.
- `reward` (Optional[float]) - The value is `verifier_result["reward"]` when `verifier_result` is not `None` (otherwise, `reward` is also `None`).

## Advanced Usage

### Connecting to an Existing Server

If you already have an RlveGymEnv server running, you can connect directly:

```python
from RLVE_Gym import RlveGymEnv

# Connect to existing server
RLVE_Gymenv = RlveGymEnv(base_url="<ENV_HTTP_URL_HERE>")

# Use as normal
result = RLVE_Gymenv.reset()
result = RLVE_Gymenv.step(RlveGymAction(output="Hello!"))
```

Note: When connecting to an existing server, `RLVE_Gymenv.close()` will NOT stop the server.

## Development & Testing

### Direct Environment Testing

Test the environment logic directly without starting the HTTP server:

```bash
# From the server directory
python3 server/RLVE_Gym_environment.py
```

This verifies that:
- Environment resets correctly
- Step executes actions properly
- State tracking works
- Rewards are calculated correctly

### Running Locally

Run the server locally for development:

```bash
uvicorn server.app:app --reload
```