Spaces:
Sleeping
Sleeping
File size: 7,328 Bytes
1273f5f eae0874 3bf8430 1273f5f 3bf8430 1273f5f eae0874 3bf8430 eae0874 3bf8430 eae0874 3bf8430 56405c9 3bf8430 eae0874 5a4bb32 eae0874 c379861 3bf8430 eae0874 c379861 eae0874 3bf8430 eae0874 3bf8430 eae0874 59b6e0f eae0874 59b6e0f 3bf8430 eae0874 3bf8430 eae0874 3bf8430 eae0874 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
---
title: RlveGym Environment Server
emoji: 📡
colorFrom: purple
colorTo: blue
sdk: docker
pinned: false
app_port: 8000
base_path: /web
tags:
- openenv
---
# RlveGym Environment
This package contains a collection of 400 verifiable environments from RLVE-Gym, introduced by the paper [*RLVE: Scaling Up Reinforcement Learning for Language Models with Adaptive Verifiable Environments*](https://arxiv.org/abs/2511.07317) (original GitHub repository is [here](https://github.com/Zhiyuan-Zeng/RLVE)).
## Quick Start
The simplest way to use RlveGym environment is through the `RlveGymEnv` class:
```python
from RLVE_Gym import RlveGymAction, RlveGymEnv
try:
# Create environment from Docker image
RLVE_Gymenv = RlveGymEnv.from_docker_image("RLVE_Gym-env:latest")
# If you prefer not to build the Docker image locally, you can try: RLVE_Gymenv = RlveGymEnv.from_docker_image("registry.hf.space/zhiyuanzeng-rlve-gym:latest")
# Reset
result = RLVE_Gymenv.reset()
print(f"Problem Prompt: {result.observation.problem_input}")
# Or:
print(f"Problem Prompt (from the environment's state): {RLVE_Gymenv.state().problem_input}")
# Send multiple outputs
outputs = [
"Wrong Format",
r"<answer>0</answer>", # Wrong Answer
r"<answer>4753</answer>", # Please replace "4753" with the correct answer
]
for output in outputs:
result = RLVE_Gymenv.step(RlveGymAction(output = output))
print(f"Sent: '{output}'")
print(f"Result: `{result}`")
print(f"`verifier_result`: `{result.observation.verifier_result}`")
print(f"`reward`: `{result.reward}`")
print("`accuracy`: `{}`".format(result.observation.verifier_result["accuracy"]))
print("(so far) sum_accuracy/num_samples = {}/{}".format(RLVE_Gymenv.state().sum_accuracy, RLVE_Gymenv.state().num_samples))
print("\n")
finally:
# Always clean up
RLVE_Gymenv.close()
```
That's it! The `RlveGymEnv.from_docker_image()` method handles:
- Starting the Docker container
- Waiting for the server to be ready
- Connecting to the environment
- Container cleanup when you call `close()`
## Building the Docker Image
Before using the environment, you need to build the Docker image:
```bash
# From project root
docker build -t RLVE_Gym-env:latest -f server/Dockerfile .
```
## Deploying to Hugging Face Spaces
You can easily deploy your OpenEnv environment to Hugging Face Spaces using the `openenv push` command:
```bash
# From the environment directory (where openenv.yaml is located)
openenv push
# Or specify options
openenv push --namespace my-org --private
```
The `openenv push` command will:
1. Validate that the directory is an OpenEnv environment (checks for `openenv.yaml`)
2. Prepare a custom build for Hugging Face Docker space (enables web interface)
3. Upload to Hugging Face (ensuring you're logged in)
### Prerequisites
- Authenticate with Hugging Face: The command will prompt for login if not already authenticated
### Options
- `--directory`, `-d`: Directory containing the OpenEnv environment (defaults to current directory)
- `--repo-id`, `-r`: Repository ID in format 'username/repo-name' (defaults to 'username/env-name' from openenv.yaml)
- `--base-image`, `-b`: Base Docker image to use (overrides Dockerfile FROM)
- `--private`: Deploy the space as private (default: public)
### Examples
```bash
# Push to your personal namespace (defaults to username/env-name from openenv.yaml)
openenv push
# Push to a specific repository
openenv push --repo-id my-org/my-env
# Push with a custom base image
openenv push --base-image ghcr.io/meta-pytorch/openenv-base:latest
# Push as a private space
openenv push --private
# Combine options
openenv push --repo-id my-org/my-env --base-image custom-base:latest --private
```
After deployment, your space will be available at:
`https://huggingface.co/spaces/<repo-id>`
The deployed space includes:
- **Web Interface** at `/web` - Interactive UI for exploring the environment
- **API Documentation** at `/docs` - Full OpenAPI/Swagger interface
- **Health Check** at `/health` - Container health monitoring
## Environment Details
### Environment Initialization
Please check [here](server/RLVE_Gym_environment.py) for detailed usage:
- `environment_identifier` (str) - The environment's identifier. Check [here](server/Gym/environments/__init__.py) for detailed usage.
- `difficulty` (int) - The difficulty of generated problems.
- `answer_markers` (Tuple[str] of length 2) - How the environment extracts the final answer from a model output.
- `initial_seed` (int) - The initial seed to use when generating the first problem. Whenever `reset()` is called, the seed will be incremented by 1.
Right now, you can set these arguments by passing them through environment variables:
```python
RLVE_Gymenv = RlveGymEnv.from_docker_image(
"RLVE_Gym-env:latest",
env_vars = {
"RLVEGYM_ENVIRONMENT_IDENTIFIER": "Sorting",
"RLVEGYM_DIFFICULTY": "2",
"RLVEGYM_ANSWER_MARKER_START": r"\boxed{",
"RLVEGYM_ANSWER_MARKER_END": r"}",
"RLVEGYM_INITIAL_SEED": "10",
},
)
```
### Action
**RlveGymAction**: Contains a single field
- `output` (str) - The model's output to get verified.
### State
**RlveGymState**:
- `seed` (int) - The seed to use when running `reset()`.
- `problem_input` (Optional[str]) - The input of the problem; if it is `None`, it means that the problem generation has not been run, or it failed.
- `num_samples` (int) and `sum_accuracy` (int) - The statistics of the result of `step(action)` so far for the current problem (the number of outputs sent to the verifier and the number of correct ones).
### Observation
**RlveGymObservation**:
- `problem_input` (Optional[str]) - The input of the problem; if it is `None`, it means that the problem generation has not been run or has failed.
- `verifier_result` (Optional[dict]) - Contains `reward` as the raw reward, `accuracy` as the 0/1 correctness, and `format_score` as the 0/1 format correctness; if it is `None`, it means that the verification has failed.
- `success` (bool) - `True` or `False` indicates whether the operation succeeded.
- `message` (str) - The explanation of `success`.
- `reward` (Optional[float]) - The value is `verifier_result["reward"]` when `verifier_result` is not `None` (otherwise, `reward` is also `None`).
## Advanced Usage
### Connecting to an Existing Server
If you already have an RlveGymEnv server running, you can connect directly:
```python
from RLVE_Gym import RlveGymEnv
# Connect to existing server
RLVE_Gymenv = RlveGymEnv(base_url="<ENV_HTTP_URL_HERE>")
# Use as normal
result = RLVE_Gymenv.reset()
result = RLVE_Gymenv.step(RlveGymAction(output="Hello!"))
```
Note: When connecting to an existing server, `RLVE_Gymenv.close()` will NOT stop the server.
## Development & Testing
### Direct Environment Testing
Test the environment logic directly without starting the HTTP server:
```bash
# From the server directory
python3 server/RLVE_Gym_environment.py
```
This verifies that:
- Environment resets correctly
- Step executes actions properly
- State tracking works
- Rewards are calculated correctly
### Running Locally
Run the server locally for development:
```bash
uvicorn server.app:app --reload
``` |