Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| from PIL import Image | |
| import torch | |
| # Load the smaller StarVector model (lighter, runs fine on free Hugging Face hardware) | |
| model_id = "starvector/starvector-1b-im2svg" | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16) | |
| def convert_to_svg(image): | |
| # Prepare the image and run inference | |
| inputs = tokenizer(image, return_tensors="pt") | |
| outputs = model.generate(**inputs, max_new_tokens=1024) | |
| svg_code = tokenizer.decode(outputs[0]) | |
| return svg_code | |
| demo = gr.Interface( | |
| fn=convert_to_svg, | |
| inputs=gr.Image(type="pil", label="Upload Image"), | |
| outputs=gr.Code(language="svg", label="Generated SVG Code"), | |
| title="StarVector Image → SVG Converter" | |
| ) | |
| demo.launch() | |