Spaces:
Running
Running
File size: 30,541 Bytes
610152e 4f0125c 610152e 4f0125c 610152e 4f0125c 610152e 4f0125c 610152e 4f0125c 610152e 4f0125c 610152e 4f0125c 610152e 4f0125c 610152e 4f0125c 610152e 4f0125c 610152e 4f0125c 610152e 4f0125c 610152e 4f0125c 610152e 4f0125c 610152e 4f0125c 610152e 4f0125c 610152e 4f0125c 610152e 4f0125c 610152e 4f0125c 610152e 4f0125c 610152e 4f0125c 610152e 4f0125c 610152e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 |
# aurora_pipeline.py
# End-to-end pipeline for CAMS data β Aurora model β predictions β NetCDF
import subprocess
import os
def get_freest_cuda_device_id():
try:
result = subprocess.run(
['nvidia-smi', '--query-gpu=memory.free', '--format=csv,nounits,noheader'],
stdout=subprocess.PIPE, encoding='utf-8'
)
memory_free = [int(x) for x in result.stdout.strip().split('\n')]
device_id = memory_free.index(max(memory_free))
return str(device_id)
except Exception as e:
print(f"Could not query nvidia-smi, defaulting to 0. Error: {e}")
return "0"
# Set CUDA_VISIBLE_DEVICES before importing torch
os.environ["CUDA_VISIBLE_DEVICES"] = get_freest_cuda_device_id()
import torch
import xarray as xr
import pickle
from pathlib import Path
import numpy as np
import zipfile
import cdsapi
from huggingface_hub import hf_hub_download
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as cfeature
from datetime import datetime, timedelta
from aurora import Batch, Metadata, AuroraAirPollution, rollout
class AuroraPipeline:
def __init__(self,
extracted_dir="downloads/extracted",
static_path="static_vars.pkl",
model_ckpt="aurora-0.4-air-pollution.ckpt",
model_repo="microsoft/aurora",
device=None,
cpu_only=False):
if device is None or device == "cuda":
# CUDA_VISIBLE_DEVICES is set, so use 'cuda:0'
device = "cuda:0" if torch.cuda.is_available() and not cpu_only else "cpu"
self.extracted_dir = Path(extracted_dir)
self.static_path = Path(static_path)
self.model_ckpt = model_ckpt
self.model_repo = model_repo
self.device = device
self.cpu_only = cpu_only or (device == "cpu")
self.static_vars = self._load_static_vars()
self.model = None
def _load_static_vars(self):
"""Load static variables from Hugging Face Hub"""
static_path = hf_hub_download(
repo_id="microsoft/aurora",
filename="aurora-0.4-air-pollution-static.pickle",
)
if not Path(static_path).exists():
raise FileNotFoundError(f"Static variables file not found: {static_path}")
with open(static_path, "rb") as f:
static_vars = pickle.load(f)
return static_vars
def create_batch(self, date_str, Batch, Metadata, time_index=1):
"""Create a batch for Aurora model from CAMS data
Args:
date_str: Date string (YYYY-MM-DD)
Batch: Aurora Batch class
Metadata: Aurora Metadata class
time_index: 0 for T-1 (first time), 1 for T (second time)
"""
surface_path = self.extracted_dir / f"{date_str}-cams-surface.nc"
atmos_path = self.extracted_dir / f"{date_str}-cams-atmospheric.nc"
if not surface_path.exists() or not atmos_path.exists():
raise FileNotFoundError(f"Missing CAMS files for {date_str} in {self.extracted_dir}")
surf_vars_ds = xr.open_dataset(surface_path, engine="netcdf4", decode_timedelta=True)
atmos_vars_ds = xr.open_dataset(atmos_path, engine="netcdf4", decode_timedelta=True)
# Select zero-hour forecast but keep both time steps
surf_vars_ds = surf_vars_ds.isel(forecast_period=0)
atmos_vars_ds = atmos_vars_ds.isel(forecast_period=0)
# Don't select time index - Aurora needs both T-1 and T as input
print(f"π Using both time steps (T-1 and T) as input for Aurora")
# Get the time for metadata (use the specified time_index for metadata only)
selected_time = surf_vars_ds.forecast_reference_time.values[time_index].astype("datetime64[s]").tolist()
batch = Batch(
surf_vars={
"2t": torch.from_numpy(surf_vars_ds["t2m"].values[None]),
"10u": torch.from_numpy(surf_vars_ds["u10"].values[None]),
"10v": torch.from_numpy(surf_vars_ds["v10"].values[None]),
"msl": torch.from_numpy(surf_vars_ds["msl"].values[None]),
"pm1": torch.from_numpy(surf_vars_ds["pm1"].values[None]),
"pm2p5": torch.from_numpy(surf_vars_ds["pm2p5"].values[None]),
"pm10": torch.from_numpy(surf_vars_ds["pm10"].values[None]),
"tcco": torch.from_numpy(surf_vars_ds["tcco"].values[None]),
"tc_no": torch.from_numpy(surf_vars_ds["tc_no"].values[None]),
"tcno2": torch.from_numpy(surf_vars_ds["tcno2"].values[None]),
"gtco3": torch.from_numpy(surf_vars_ds["gtco3"].values[None]),
"tcso2": torch.from_numpy(surf_vars_ds["tcso2"].values[None]),
},
static_vars={k: torch.from_numpy(v) for k, v in self.static_vars.items()},
atmos_vars={
"t": torch.from_numpy(atmos_vars_ds["t"].values[None]),
"u": torch.from_numpy(atmos_vars_ds["u"].values[None]),
"v": torch.from_numpy(atmos_vars_ds["v"].values[None]),
"q": torch.from_numpy(atmos_vars_ds["q"].values[None]),
"z": torch.from_numpy(atmos_vars_ds["z"].values[None]),
"co": torch.from_numpy(atmos_vars_ds["co"].values[None]),
"no": torch.from_numpy(atmos_vars_ds["no"].values[None]),
"no2": torch.from_numpy(atmos_vars_ds["no2"].values[None]),
"go3": torch.from_numpy(atmos_vars_ds["go3"].values[None]),
"so2": torch.from_numpy(atmos_vars_ds["so2"].values[None]),
},
metadata=Metadata(
lat=torch.from_numpy(atmos_vars_ds.latitude.values),
lon=torch.from_numpy(atmos_vars_ds.longitude.values),
time=(selected_time,),
atmos_levels=tuple(int(level) for level in atmos_vars_ds.pressure_level.values),
),
)
return batch
def load_model(self, AuroraAirPollution):
"""Load Aurora model and move to device"""
import gc
# Check memory BEFORE loading
if torch.cuda.is_available():
print(f"π GPU Memory BEFORE loading model:")
print(f" Allocated: {torch.cuda.memory_allocated(0) / 1024**3:.2f} GB")
print(f" Reserved: {torch.cuda.memory_reserved(0) / 1024**3:.2f} GB")
print(f" Free: {(torch.cuda.get_device_properties(0).total_memory - torch.cuda.memory_reserved(0)) / 1024**3:.2f} GB")
# Clear cache
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
model = AuroraAirPollution()
# Check AFTER initialization but BEFORE loading checkpoint
if torch.cuda.is_available():
print(f"οΏ½ GPU Memory AFTER model init:")
print(f" Allocated: {torch.cuda.memory_allocated(0) / 1024**3:.2f} GB")
model.load_checkpoint(self.model_repo, self.model_ckpt)
# Check AFTER loading checkpoint
if torch.cuda.is_available():
print(f"π GPU Memory AFTER checkpoint load:")
print(f" Allocated: {torch.cuda.memory_allocated(0) / 1024**3:.2f} GB")
model.eval()
model = model.to(self.device)
# Check AFTER moving to device
if torch.cuda.is_available():
print(f"π GPU Memory AFTER moving to device:")
print(f" Allocated: {torch.cuda.memory_allocated(0) / 1024**3:.2f} GB")
print(f" Reserved: {torch.cuda.memory_reserved(0) / 1024**3:.2f} GB")
self.model = model
print(f"β
Model loaded on {self.device}")
return model
def predict(self, batch, rollout, steps=4):
if self.model is None:
raise RuntimeError("Model not loaded. Call load_model() first.")
# Move batch to device
batch = batch.to(self.device)
with torch.inference_mode():
predictions = [pred.to("cpu") for pred in rollout(self.model, batch, steps=steps)]
return predictions
def save_predictions_to_netcdf(self, predictions, output_dir, date_str):
"""Save each prediction step as separate NetCDF files in CAMS format"""
output_dir = Path(output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
print(f"πΎ Saving {len(predictions)} prediction steps as separate files")
generation_date = datetime.now().strftime("%Y%m%d")
saved_files = []
for step_idx, pred in enumerate(predictions):
step_num = step_idx + 1
# Create filename: predictiondate_step_generationdate.nc
filename = f"{date_str}_step{step_num:02d}_{generation_date}.nc"
file_path = output_dir / filename
# Extract coordinates from first prediction
metadata = pred.metadata
lats = metadata.lat.cpu().numpy() if hasattr(metadata.lat, 'cpu') else metadata.lat.numpy()
lons = metadata.lon.cpu().numpy() if hasattr(metadata.lon, 'cpu') else metadata.lon.numpy()
# Create CAMS-compatible coordinates and dimensions
# CAMS format uses: forecast_period, forecast_reference_time, latitude, longitude
coords = {
'forecast_period': ('forecast_period', [0]), # Single forecast period
'forecast_reference_time': ('forecast_reference_time', [0, 1]), # Two reference times (T-1, T)
'latitude': ('latitude', lats),
'longitude': ('longitude', lons)
}
# Add valid_time variable (CAMS format)
data_vars = {
'valid_time': (['forecast_reference_time', 'forecast_period'],
np.array([[step_num * 12], [step_num * 12]])) # Same forecast hours for both ref times
}
# Add surface variables in CAMS format: (forecast_period, forecast_reference_time, latitude, longitude)
# Map Aurora variable names to CAMS variable names
aurora_to_cams_surface = {
'2t': 't2m', # 2 metre temperature
'10u': 'u10', # 10 metre U wind component
'10v': 'v10', # 10 metre V wind component
'msl': 'msl', # Mean sea level pressure (same)
'pm1': 'pm1', # PM1 (same)
'pm2p5': 'pm2p5', # PM2.5 (same)
'pm10': 'pm10', # PM10 (same)
'tcco': 'tcco', # Total column CO (same)
'tc_no': 'tc_no', # Total column NO (same)
'tcno2': 'tcno2', # Total column NO2 (same)
'gtco3': 'gtco3', # Total column O3 (same)
'tcso2': 'tcso2' # Total column SO2 (same)
}
for aurora_var, var_tensor in pred.surf_vars.items():
cams_var = aurora_to_cams_surface.get(aurora_var, aurora_var) # Use CAMS name or fallback to Aurora name
var_data = var_tensor.cpu().numpy() if hasattr(var_tensor, 'cpu') else var_tensor.numpy()
var_data = np.squeeze(var_data)
# Ensure 2D for surface variables
if var_data.ndim > 2:
while var_data.ndim > 2:
var_data = var_data[0]
elif var_data.ndim < 2:
raise ValueError(f"Surface variable {aurora_var} has insufficient dimensions: {var_data.shape}")
# Expand to CAMS format: (1, 2, lat, lon) - same data for both forecast reference times
cams_data = np.broadcast_to(var_data[np.newaxis, np.newaxis, :, :], (1, 2, var_data.shape[0], var_data.shape[1]))
data_vars[cams_var] = (['forecast_period', 'forecast_reference_time', 'latitude', 'longitude'], cams_data)
# Add atmospheric variables if present
# CAMS format: (forecast_period, forecast_reference_time, pressure_level, latitude, longitude)
# Map Aurora atmospheric variable names to CAMS names
aurora_to_cams_atmos = {
't': 't', # Temperature (same)
'u': 'u', # U wind component (same)
'v': 'v', # V wind component (same)
'q': 'q', # Specific humidity (same)
'z': 'z', # Geopotential (same)
'co': 'co', # Carbon monoxide (same)
'no': 'no', # Nitrogen monoxide (same)
'no2': 'no2', # Nitrogen dioxide (same)
'go3': 'go3', # Ozone (same)
'so2': 'so2' # Sulphur dioxide (same)
}
if hasattr(pred, 'atmos_vars') and pred.atmos_vars:
atmos_levels = list(metadata.atmos_levels) if hasattr(metadata, 'atmos_levels') else None
if atmos_levels:
coords['pressure_level'] = ('pressure_level', atmos_levels)
for aurora_var, var_tensor in pred.atmos_vars.items():
cams_var = aurora_to_cams_atmos.get(aurora_var, aurora_var) # Use CAMS name or fallback
var_data = var_tensor.cpu().numpy() if hasattr(var_tensor, 'cpu') else var_tensor.numpy()
var_data = np.squeeze(var_data)
# Ensure 3D for atmospheric variables (pressure, lat, lon)
if var_data.ndim > 3:
while var_data.ndim > 3:
var_data = var_data[0]
elif var_data.ndim < 3:
raise ValueError(f"Atmospheric variable {aurora_var} has insufficient dimensions: {var_data.shape}")
# Expand to CAMS format: (1, 2, pressure, lat, lon) - same data for both forecast reference times
cams_data = np.broadcast_to(var_data[np.newaxis, np.newaxis, :, :, :],
(1, 2, var_data.shape[0], var_data.shape[1], var_data.shape[2]))
data_vars[cams_var] = (['forecast_period', 'forecast_reference_time', 'pressure_level', 'latitude', 'longitude'], cams_data)
# Create dataset for this step
ds = xr.Dataset(data_vars, coords=coords)
# Add attributes
ds.attrs.update({
'title': f'Aurora Air Pollution Prediction - Step {step_num}',
'source': 'Aurora model by Microsoft Research',
'prediction_date': date_str,
'step': step_num,
'forecast_hours': step_num * 12,
'generation_date': generation_date,
'creation_time': datetime.now().isoformat(),
'spatial_resolution': f"{abs(lons[1] - lons[0]):.3f} degrees"
})
# Add variable attributes (using CAMS variable names)
var_attrs = {
't2m': {'long_name': '2 metre temperature', 'units': 'K'},
'u10': {'long_name': '10 metre U wind component', 'units': 'm s-1'},
'v10': {'long_name': '10 metre V wind component', 'units': 'm s-1'},
'msl': {'long_name': 'Mean sea level pressure', 'units': 'Pa'},
'pm1': {'long_name': 'Particulate matter d < 1 um', 'units': 'kg m-3'},
'pm2p5': {'long_name': 'Particulate matter d < 2.5 um', 'units': 'kg m-3'},
'pm10': {'long_name': 'Particulate matter d < 10 um', 'units': 'kg m-3'},
'tcco': {'long_name': 'Total column carbon monoxide', 'units': 'kg m-2'},
'tc_no': {'long_name': 'Total column nitrogen monoxide', 'units': 'kg m-2'},
'tcno2': {'long_name': 'Total column nitrogen dioxide', 'units': 'kg m-2'},
'gtco3': {'long_name': 'Total column ozone', 'units': 'kg m-2'},
'tcso2': {'long_name': 'Total column sulphur dioxide', 'units': 'kg m-2'},
# Atmospheric variables
't': {'long_name': 'Temperature', 'units': 'K'},
'u': {'long_name': 'U component of wind', 'units': 'm s-1'},
'v': {'long_name': 'V component of wind', 'units': 'm s-1'},
'q': {'long_name': 'Specific humidity', 'units': 'kg kg-1'},
'z': {'long_name': 'Geopotential', 'units': 'm2 s-2'},
'co': {'long_name': 'Carbon monoxide', 'units': 'kg kg-1'},
'no': {'long_name': 'Nitrogen monoxide', 'units': 'kg kg-1'},
'no2': {'long_name': 'Nitrogen dioxide', 'units': 'kg kg-1'},
'go3': {'long_name': 'Ozone', 'units': 'kg kg-1'},
'so2': {'long_name': 'Sulphur dioxide', 'units': 'kg kg-1'}
}
for var_name, attrs in var_attrs.items():
if var_name in ds.data_vars:
ds[var_name].attrs.update(attrs)
# Save to NetCDF
ds.to_netcdf(file_path, format='NETCDF4')
saved_files.append(str(file_path))
print(f" β
Step {step_num}: {filename}")
print(f"β
Saved {len(saved_files)} prediction files")
return saved_files
def _save_predictions_single_file(self, predictions, output_path):
"""Save all prediction steps to a single NetCDF file (new method)"""
# Get metadata from first prediction
first_pred = predictions[0]
metadata = first_pred.metadata
# Extract coordinates
lats = metadata.lat.cpu().numpy() if hasattr(metadata.lat, 'cpu') else metadata.lat.numpy()
lons = metadata.lon.cpu().numpy() if hasattr(metadata.lon, 'cpu') else metadata.lon.numpy()
# Create step coordinate
steps = np.arange(len(predictions))
# Prepare data variables
data_vars = {}
coords = {
'step': ('step', steps),
'lat': ('lat', lats),
'lon': ('lon', lons)
}
# Add surface variables
surf_var_names = list(first_pred.surf_vars.keys())
for var in surf_var_names:
# Stack predictions along step dimension
var_data_list = []
for pred in predictions:
var_tensor = pred.surf_vars[var]
# Move to CPU and convert to numpy
var_data = var_tensor.cpu().numpy() if hasattr(var_tensor, 'cpu') else var_tensor.numpy()
# Robust dimension handling: squeeze all singleton dimensions and keep only last 2 (lat, lon)
var_data = np.squeeze(var_data) # Remove all singleton dimensions
# Ensure we have exactly 2 dimensions (lat, lon) for surface variables
if var_data.ndim > 2:
# Take the last 2 dimensions as lat, lon
var_data = var_data[..., :, :]
# If still more than 2D, take the first slice of extra dimensions
while var_data.ndim > 2:
var_data = var_data[0]
elif var_data.ndim < 2:
raise ValueError(f"Surface variable {var} has insufficient dimensions: {var_data.shape}")
var_data_list.append(var_data)
# Stack along step dimension: (steps, lat, lon)
arr = np.stack(var_data_list, axis=0)
data_vars[var] = (['step', 'lat', 'lon'], arr)
# Add atmospheric variables if present
if hasattr(first_pred, 'atmos_vars') and first_pred.atmos_vars:
atmos_levels = list(metadata.atmos_levels) if hasattr(metadata, 'atmos_levels') else None
if atmos_levels:
coords['pressure_level'] = ('pressure_level', atmos_levels)
atmos_var_names = list(first_pred.atmos_vars.keys())
for var in atmos_var_names:
var_data_list = []
for pred in predictions:
var_tensor = pred.atmos_vars[var]
# Move to CPU and convert to numpy
var_data = var_tensor.cpu().numpy() if hasattr(var_tensor, 'cpu') else var_tensor.numpy()
# Robust dimension handling: squeeze singleton dimensions but keep 3D structure
var_data = np.squeeze(var_data) # Remove singleton dimensions
# Ensure we have exactly 3 dimensions (levels, lat, lon) for atmospheric variables
if var_data.ndim > 3:
# Take the last 3 dimensions as levels, lat, lon
var_data = var_data[..., :, :, :]
# If still more than 3D, take the first slice of extra dimensions
while var_data.ndim > 3:
var_data = var_data[0]
elif var_data.ndim < 3:
raise ValueError(f"Atmospheric variable {var} has insufficient dimensions: {var_data.shape}")
var_data_list.append(var_data)
# Stack along step dimension: (steps, levels, lat, lon)
arr = np.stack(var_data_list, axis=0)
data_vars[var] = (['step', 'pressure_level', 'lat', 'lon'], arr)
# Create dataset
ds = xr.Dataset(data_vars, coords=coords)
# Add global attributes
ds.attrs.update({
'title': 'Aurora Air Pollution Model Predictions',
'source': 'Aurora model by Microsoft Research',
'creation_date': datetime.now().isoformat(),
'forecast_steps': len(predictions),
'spatial_resolution': f"{abs(lons[1] - lons[0]):.3f} degrees",
'conventions': 'CF-1.8'
})
# Add variable attributes for better visualization
var_attrs = {
'2t': {'long_name': '2 metre temperature', 'units': 'K'},
'10u': {'long_name': '10 metre U wind component', 'units': 'm s-1'},
'10v': {'long_name': '10 metre V wind component', 'units': 'm s-1'},
'msl': {'long_name': 'Mean sea level pressure', 'units': 'Pa'},
'pm1': {'long_name': 'Particulate matter d < 1 um', 'units': 'kg m-3'},
'pm2p5': {'long_name': 'Particulate matter d < 2.5 um', 'units': 'kg m-3'},
'pm10': {'long_name': 'Particulate matter d < 10 um', 'units': 'kg m-3'},
'tcco': {'long_name': 'Total column carbon monoxide', 'units': 'kg m-2'},
'tc_no': {'long_name': 'Total column nitrogen monoxide', 'units': 'kg m-2'},
'tcno2': {'long_name': 'Total column nitrogen dioxide', 'units': 'kg m-2'},
'gtco3': {'long_name': 'Total column ozone', 'units': 'kg m-2'},
'tcso2': {'long_name': 'Total column sulphur dioxide', 'units': 'kg m-2'}
}
for var_name, attrs in var_attrs.items():
if var_name in ds.data_vars:
ds[var_name].attrs.update(attrs)
# Save to NetCDF
ds.to_netcdf(output_path, format='NETCDF4')
print(f"β
Predictions saved to {output_path}")
print(f" Variables: {list(ds.data_vars.keys())}")
print(f" Steps: {len(steps)}")
print(f" Spatial grid: {len(lats)}x{len(lons)}")
return output_path
def _save_predictions_original_method(self, predictions, output_path):
"""Fallback: Save predictions using the original method (separate files per step)"""
output_dir = Path(output_path)
output_dir.mkdir(exist_ok=True)
for step, pred in enumerate(predictions):
# Create xarray dataset for surface variables
surf_data = {}
for var_name, var_data in pred.surf_vars.items():
surf_data[var_name] = (
["time", "batch", "lat", "lon"],
var_data.cpu().numpy() if hasattr(var_data, 'cpu') else var_data.numpy()
)
# Create xarray dataset for atmospheric variables
atmos_data = {}
for var_name, var_data in pred.atmos_vars.items():
atmos_data[var_name] = (
["time", "batch", "level", "lat", "lon"],
var_data.cpu().numpy() if hasattr(var_data, 'cpu') else var_data.numpy()
)
# Create surface dataset
surf_ds = xr.Dataset(
surf_data,
coords={
"time": [pred.metadata.time[0]],
"batch": [0],
"lat": pred.metadata.lat.cpu().numpy() if hasattr(pred.metadata.lat, 'cpu') else pred.metadata.lat.numpy(),
"lon": pred.metadata.lon.cpu().numpy() if hasattr(pred.metadata.lon, 'cpu') else pred.metadata.lon.numpy(),
}
)
# Create atmospheric dataset
atmos_ds = xr.Dataset(
atmos_data,
coords={
"time": [pred.metadata.time[0]],
"batch": [0],
"level": list(pred.metadata.atmos_levels),
"lat": pred.metadata.lat.cpu().numpy() if hasattr(pred.metadata.lat, 'cpu') else pred.metadata.lat.numpy(),
"lon": pred.metadata.lon.cpu().numpy() if hasattr(pred.metadata.lon, 'cpu') else pred.metadata.lon.numpy(),
}
)
# Save to NetCDF
surf_filename = f"step_{step:02d}_surface.nc"
atmos_filename = f"step_{step:02d}_atmospheric.nc"
surf_ds.to_netcdf(output_dir / surf_filename)
atmos_ds.to_netcdf(output_dir / atmos_filename)
print(f"Saved step {step} predictions (fallback method)")
return output_dir
def run_pipeline(self, date_str, Batch, Metadata, AuroraAirPollution, rollout, steps=4, output_path=None):
"""Full pipeline: batch creation, model loading, prediction, save output"""
batch = self.create_batch(date_str, Batch, Metadata)
self.load_model(AuroraAirPollution)
predictions = self.predict(batch, rollout, steps=steps)
if output_path:
self.save_predictions_to_netcdf(predictions, output_path)
return predictions
def run_aurora_prediction_pipeline(self, date_str, Batch, Metadata, AuroraAirPollution, rollout, steps=4, base_predictions_dir="predictions"):
"""Enhanced Aurora prediction pipeline with organized storage"""
print(f"π Starting Aurora prediction pipeline for {date_str}")
print(f"π Forward prediction steps: {steps} (covering {steps * 12} hours)")
# Create organized directory structure
run_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
run_dir = Path(base_predictions_dir) / f"{date_str}_run_{run_timestamp}"
run_dir.mkdir(parents=True, exist_ok=True)
# Load model once
print("π§ Loading Aurora model...")
self.load_model(AuroraAirPollution)
# Use the latest timestamp (index 1) for prediction
print("π₯ Creating input batch for T (second time)...")
batch = self.create_batch(date_str, Batch, Metadata, time_index=1)
# Run predictions
print(f"β‘ Running {steps} prediction steps...")
predictions = self.predict(batch, rollout, steps=steps)
# Save predictions as separate files
saved_files = self.save_predictions_to_netcdf(predictions, run_dir, date_str)
# Save metadata about the run
run_metadata = {
"date": date_str,
"run_timestamp": run_timestamp,
"steps": steps,
"time_coverage_hours": steps * 12,
"input_times": ["T-1", "T"],
"prediction_files": saved_files,
"run_directory": str(run_dir)
}
metadata_file = run_dir / "run_metadata.json"
with open(metadata_file, 'w') as f:
import json
json.dump(run_metadata, f, indent=2)
print(f"β
Aurora prediction pipeline completed")
print(f"π Results saved to: {run_dir}")
print(f"π Coverage: {steps * 12} hours forward from {date_str}")
return run_metadata
@staticmethod
def list_prediction_runs(base_predictions_dir="predictions"):
"""List all available prediction runs with metadata"""
runs = []
predictions_path = Path(base_predictions_dir)
if not predictions_path.exists():
return runs
for run_dir in predictions_path.iterdir():
if run_dir.is_dir() and "_run_" in run_dir.name:
metadata_file = run_dir / "run_metadata.json"
if metadata_file.exists():
try:
import json
with open(metadata_file, 'r') as f:
metadata = json.load(f)
# Check if any prediction files exist (new format with separate step files)
nc_files = list(run_dir.glob("*.nc"))
has_predictions = len(nc_files) > 0
# Add additional info
metadata['available'] = has_predictions
metadata['run_dir'] = str(run_dir)
metadata['relative_path'] = run_dir.name
metadata['prediction_files'] = [f.name for f in nc_files]
metadata['num_files'] = len(nc_files)
runs.append(metadata)
except Exception as e:
print(f"β οΈ Could not read metadata for {run_dir}: {e}")
# Sort by run timestamp (newest first)
runs.sort(key=lambda x: x.get('run_timestamp', ''), reverse=True)
return runs
# Example usage (not run on import)
if __name__ == "__main__":
pass |